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Abstract

The recognition of taxonomic entities plays a key role for natural language pro-

cessing and understanding in botanical contexts. Automating knowledge and entity

extraction is hence a core endeavor for populating and enriching existing knowledge

bases and for digitally interlinking scientific and ethnobotanical plant knowledge.

In this work, we present a semi-supervised approach for the automatic recognition

of plant names in their Latin and vernacular variants in German and English across

different text genres. For this purpose, we compiled four corpora differing in terms

of formality (scientific vs. non-scientific), writing style (blog articles vs. introductory

Wikipedia sections), and publication period (historical vs. recent). Our proposed

pipeline includes linguistic preprocessing based on sentence splitting, tokenization,

and part-of-speech tagging. Additionally, we use dictionary-based annotations to

automatically label the corpus data and create a low-effort silver standard. The

dictionary lookups rely on large language-specific gazetteers for a total of nine hi-

erarchical scientific and vernacular entity labels collected from several botanical re-

sources. Subsequently, we train a state-of-the-art named entity recognition (NER)

system based on a bidirectional long-short-term-memory architecture [Hochreiter

and Schmidhuber, 1997] followed by a conditional random field layer (bi-LSTM-

CRF) [Lample et al., 2016]. To exploit token-level and character-level contextual

information from the silver-labeled datasets, we integrate the 300-dimensional pre-

trained FastText word embeddings [Grave et al., 2018] and re-train character-level

word representations on the input data [Lample et al., 2016]. In total, we generate

eight neural models per language and dataset. An evaluation of the entity tagger

shows F1-scores of >86% on both manually and automatically annotated test sets for

the combined English dataset. For German, we report a final F1-score of >94% on

both annotation types. We discuss the insights gained from adopting several dataset

and language-specific parameter combinations from a single and cross-dataset eval-

uation perspective. Finally, we disambiguate the entity candidates proposed by the

tagging system and link them to an international botanical reference database using

a lookup table for the vernacular names. Our approach emphasizes the potential

of fine-grained, domain-specific entity labels and low-effort data models trained on

automatically labeled corpus data to explore and computationally process lower-

resourced fields and genres for knowledge preservation purposes.



Zusammenfassung

Die hier vorliegende Masterarbeit befasst sich mit der automatischen Erkennung,

Klassifizierung und Verlinkung von wissenschaftlichen und volkstümlichen Pflanzen-

namen in Texten. Zu diesem Zweck wurden insgesamt vier Korpora für Deutsch und

Englisch mit Texten unterschiedlicher Genres, Schreibstile und Epochen erstellt, die

anschließend mithilfe eines Wörterbuch-basierten Annotationssystems automatisch

annotiert wurden. Letzteres beruht auf umfangreichen Namenslisten für lateinische,

deutsche und englische Pflanzennamen, die für diese Arbeit aus diversen botanischen

Ressourcen zusammengeführt wurden. Anschließend wurden verschiedene neurona-

le Modelle mithilfe eines bidirektionalen LSTM-CRFs für beide Sprachen trainiert

und ausgewertet. Die vom finalen System vorgeschlagenen Pflanzennamen wurden

abschließend mithilfe einer botanischen Referenzdatenbank disambiguiert und ver-

linkt. Diese Arbeit trägt somit dazu bei, multilinguales, botanisches sowie biodiver-

sitätsbezogenes Wissen zu erschließen und Pflanzen-Volksnamen in verschiedenen

Textsorten automatisch zu erkennen und zu disambiguieren.
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* * *

“There’s rosemary, that’s for remembrance; pray, love, remember: and

there is pansies; that’s for thoughts. There’s fennel for you, and

columbines. There’s rue for you; and here’s some for me; we may call it

herb-grace o’Sundays: O you must wear your rue with a difference.

There’s a daisy. I would give you some violets, but they withered all

when my father died. They say he made a good end.”

* * *

— William Shakespeare, Hamlet (Act 4, Scene 5)
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1 Introduction

1.1 Motivation

International knowledge about plants, their value for human alimentation, and their

pharmacological application in folk medicine and herbalism is encoded in countless

languages. This wealth of traditional expertise concerning the structure, nutritional

value, chemical constituents and established plant-based treatments is of inestimable

value for our society. Despite extensive digitization efforts at present, this tradi-

tional, plant-related knowledge is not always accessible in a digital, human-readable

and machine-readable format. The identification of scientific and vernacular plant

names in multilingual text material can be a way to approach the task of informa-

tion extraction in lower-resourced and under-represented fields, such as ethnobotany

and local biodiversity research. Aggregating large amounts of available information

into publicly accessible, sustainable and internationally standardized formats and

databases still constitutes a great challenge in many fields of research. The adop-

tion of Linked Open Data (LOD) for the purpose of collecting, structuring, sharing,

and connecting precious pieces of knowledge for under-resourced domains has a great

potential not only for linguistics, but also for botany, biodiversity management, and

related fields [Bizer et al., 2008; Lehmann et al., 2015; Chiarcos et al., 2011; Minami

et al., 2013].

Modern botanical literature is commonly held in English and almost exclusively

employs scientific Latin plant names. Integrating taxonomic entities (taxa) on a

vernacular level can be particularly beneficial when extracting and processing plant

knowledge from historical, heterogeneous texts or non-scientific text genres [Sharma

et al., 2017]. Additionally, the adoption of a multilingual perspective based on

the languages German and English can reveal fascinating linguistic properties of

the text passages encoding plant knowledge and the shape, quality, and composi-

tion of botanical entities in natural languages. To automatically build or enrich

multilingual knowledge bases for such specific domains, it is essential to aggregate

and interlink vernacular or synonymous alternative names to their associated and

currently accepted Latin identifiers [Seideh et al., 2016b]. By this means, compu-

1



Chapter 1. Introduction

tational methods contribute to approach the so-called botanical “names problem”

[Boyle et al., 2013; Patterson et al., 2010] and to disambiguate vernacular, synony-

mous names, and outdated Latin name variants. Our project has been motivated

by interdisciplinary efforts to apply linguistic and taxonomic expertise in combina-

tion with state-of-the-art neural named entity recognition (NER) methods to the

fields of biodiversity, (ethno-)botany, and folk medicine. With our approach, we

aim at making such domains more accessible and, last but not least, not only to

preserve knowledge in a machine-readable way, but also to safeguard centuries-old

autochthonous plant names, associated treatments and traditions.

1.2 Task Description and Outline

In this work, we present a semi-supervised approach for scientific and vernacular

plant name recognition and classification across different text genres for German

and English.1 Table 1 summarizes our overall approach and the single stages of

the project. First, we collect language-specific gazetteers (name lists) for English,

German and Latin plant names (stage 1 ). We compile four distinct corpora (stage

2 ) for the languages English and German containing different text genres and

writing styles (Wikipedia articles, mountaineering reports, historical and modern

botanical literature, blog articles). To guarantee a high concentration of botani-

cal entities, we filter the sentences for at least one present vernacular or scientific

entity mention. We then apply linguistic preprocessing (stage 3 ) before automat-

ically annotating the data in stage 4 using a tailored dictionary-based system. In

stage 5 , we train a state-of-the-art neural named entity recognition (NER) system

[Lample et al., 2016] on these datasets exploiting token-level and character-level dis-

tributional information of natural language [Mikolov et al., 2013; Ling et al., 2015;

Huang et al., 2015]. While many common NER approaches focus on the recogni-

tion of predefined entity labels such as organizations (ORG), locations (LOC), and

persons (PER), we propose a fine-grained label set for nine domain-specific entity

classes. In total, we use two labels for vernacular names and seven labels for Latin

names to detect taxonomic entities in German and English texts. Instead of focus-

ing on the evaluation and application on common benchmark corpora for NER such

as the CoNLL-2003 dataset [Tjong Kim Sang and De Meulder, 2003], we apply and

evaluate our models using the carefully selected domain-specific datasets in a single

and cross-corpus evaluation setting (stage 6 ). To improve the quality of the train-

ing material and the resulting model performance after an initial evaluation round,

1We made the annotated corpora and scripts available to the research community on GitHub:
https://github.com/IsabelMeraner/BotanicalNER.

2
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Chapter 1. Introduction

we re-annotate the data in stage 7 using pattern-based corrections and apply these

cleaned datasets for re-training and evaluating the neural models. In stage 8 , we

use the Catalogue of Life (CoL) [Roskov et al., 2018] to link and disambiguate the

entity candidates proposed by the tagger. To provide an end-to-end entity recogni-

tion and linking service for extracting botanical names from raw, unstructured text,

we implement a companion web-interface in stage 9 . We argue that state-of-the-

art natural language processing methods can be successfully applied to multifaceted

text genres and styles in order to detect and disambiguate entities on a scientific

and vernacular level, thus contributing to the exploration, interlinkage, and storage

of international botanical knowledge.

Project

Stage
Subtask Resources/Methods/Tools

1

Creation of gazetteers by aggregating (and, if necessary, digitizing)

several resources containing scientific and vernacular plant names

for German and English.

botanical/biodiversity databases,

private botanists and institutions,

historical botanical literature

2
Creation of four distinct training corpora from manifold resources

including various text genres and writing styles.

Wikipedia articles,

Text+Berg corpus [Volk et al., 2010],

blog articles and botanical literature

3
Linguistic preprocessing of datasets including tokenization,

sentence segmentation, POS-tagging and lemmatization.

NLTK [Loper and Bird, 2002],

spaCy [Honnibal and Montani, 2017]

4

Dictionary-based automatic annotation of the training data

using the gazetteers created in the first stage.

Adoption of nine distinct entity labels for data annotation:

2 for German/English vs. 7 for Latin.

Annotations in IOB scheme

[Sang and Veenstra, 1999]

Tailored dictionary-based NER-tagger

5
Training of multiple models for German and English

using a bidirectional LSTM-CRF architecture.

bi-LSTM-CRF tagger by

Lample et al. [2016]

6
Single and cross-dataset evaluation of German and English models

using different datasets and parameter combinations.
Metrics: precision, recall, F1-score

7
Re-annotation of training data using pattern-based corrections

and subsequent re-training and evaluation of the models.
bi-LSTM-CRF [Lample et al., 2016]

8
Disambiguation and linking of identified candidate entities

in a botanical reference database.
Catalogue of Life [Roskov et al., 2018]

9
Implementation and visualization on web-interface:

tokenization of input, tagging and linking of candidates.

Bootstrap [Getbootstrap.com, 2015],

Flask [Grinberg, 2014]

Table 1: Stages of project and associated subtasks, resources, methods, and tools.

3



Chapter 1. Introduction

1.3 Research Interests and Contributions

In this project, we apply state-of-the-art neural methods with the central aim of

identifying not only scientific, but also vernacular plant names in manifold text

genres for German and English. By integrating a dictionary-based annotation sys-

tem in our pipeline (project stage 2 ), we avoid time-consuming, manual human

annotation. Nonetheless, we are able to guarantee large, high-quality silver stan-

dard datasets for training and testing the models (see Section 4.1). Another central

concern is to explore the multilingual applicability of state-of-the-art named entity

recognition (NER) methods to under-explored text genres, such as mountaineering

reports or botanical literature. Moreover, our approach emphasizes the potential of

domain-specific fine-grained entity labels and low-effort data models trained on au-

tomatically annotated material to explore and computationally process such lower-

resourced fields and genres. It is in our best interest to exemplify that botanical and

linguistic expertise in combination with state-of-the-art natural language processing

(NLP) methods and technologies can develop a symbiosis at an interdisciplinary

level to promote biodiversity science, preserve knowledge and revive the interest in

our world’s botanical heritage.

The research questions of central interest in this project are:

1. How well does the state-of-the-art bidirectional LSTM-CRF architecture for

named entity recognition perform on domain-specific scientific and non-scientific

text genres?

2. How does the performance vary regarding morphologically simple versus rich

languages, namely English versus German? How do linguistic phenomena such

as compounding influence the performance of the neural NER models?

3. How well does the tagger perform regarding different classes of entities and

different taxonomic levels for scientific and vernacular names?

4. Can neural models trained on large, low-effort datasets such as Wikipedia be

applied to robustly identify botanical entities in datasets from low-resourced

domains, where only limited data resources might be available for training?

5. Can entity linking be applied for the semantic disambiguation of both scientific

and vernacular plant names?

To the best of our knowledge, this work is the first endeavor to apply computational

methods for the recognition of both scientific (Latin) and multilingual vernacular

plant names (English and German) in text. Hence, this project does not only con-

4



Chapter 1. Introduction

tribute to the enhancement of current NER systems in the biodiversity and botany

domain, it also addresses the challenging task of automating knowledge extraction

in domain-specific, scientific and non-scientific text material. By disambiguating

and interlinking scientific and vernacular names to international taxonomic refer-

ence databases, our approach provides the possibility to extend and enrich such

biodiversity knowledge bases with multilingual, regional vernacular name variants

and associated knowledge. Moreover, this project can contribute to open up the

fields of botany and biodiversity management to a broader public by integrating

knowledge on a vernacular level. For instance, we are in touch with members from

biodiversity projects and databases, such as the Catalogue of Life (CoL) [Roskov

et al., 2018], to improve the query functions of the web-service. In summary, we

sustain that the integration of vernacular plant names and associated knowledge

into open-source knowledge bases holds promising opportunities for safeguarding

traditional, ethno-cultural heritage related to plants [Seideh et al., 2016b; Sharma

et al., 2017], which is frequently encoded in material from poorly explored domains,

such as ethnobotany and folk medicine.

1.4 Thesis Structure

In Chapter 2, we embed the project in its theoretical background and give an

overview on botanic naming traditions. We explain several methods that have

been used to approach the task of named entity recognition (NER). We present

notable task-related projects in the field of botany and biodiversity informatics be-

fore introducing the most important botanical knowledge bases and entity linking

approaches. Chapter 3 describes the data resources and tools that we used to aggre-

gate the language-specific gazetteers and training corpora. We explain the prepro-

cessing steps involved during data preparation and the subsequent dictionary-based

annotation of the corpora. Moreover, we illustrate the annotation guidelines for

the additional creation of a gold standard to evaluate the bi-LSTM-CRF models.

At last, we sketch our approach to disambiguate and link the entity candidates to

a botanical reference database. In Chapter 4, we present a detailed evaluation of

our models in a single-corpus and cross-corpus evaluation setting. We conduct an

error analysis to explore potential pitfalls and sources of error. Chapter 5 focuses

on the outcomes and results gained from the final project stage concerned with the

disambiguation and linking of the entity candidates. We discuss our overall insights

from this project and return to the contributions and possible future applications of

this work in Chapter 6 and conclude the thesis in Chapter 7.

5



2 Related Work

2.1 The Names of Plants

The endeavor of naming organisms on a scientific and vernacular level has a long tra-

dition and is indispensable in order to explicitly refer to an individual. Latin plant

names and their typical suffixes are additionally designed to classify multiple in-

stances into genera, families, subfamilies and other hierarchical classes. Conversely,

vernacular names (also referred to as common or trivial plant names) are prone to

linguistic changes over time. They are also highly dependant on language, culture,

and, of course, flora and fauna of a specific region. According to Roskov et al. [2018],

less than a fifth of the organisms on this world has so far been identified, named, and

catalogued. Over time, this condition has triggered manifold local and global tax-

onomic initiatives and traditions with the central goal of naming and documenting

these testimonies of the world’s biodiversity. Many vernacular names are synony-

mous, ambiguous, or misleading such as corn (Zea mays), which is a synonym of

maize and is also used in British English to refer to different types of cereals, e.g.

wheat and rye (in Scotland) [Bareja, 2010]. The well-known dandelion (Taraxacum

officinale), for instance, has more than 500 vernacular names in standard German

and local dialects, such as “Löwenzahn”, “Pfaffendistel”, “Pusteblume”, “Milch-

schreck”, “Kuhblume” or “Ackerzichorie” [Helmut, 1986], just to mention a few

of them. The need for an international classification system based on formal con-

sensus was first explored by Aristotle and later extended in the polynomial system,

which resulted in excessively long descriptive names [Bareja, 2010; Hogan and Taub,

2011]. With Charles Linnaeus, the so-called father of modern taxonomy, a simplified

naming tradition entered the field, today known as “binomial nomenclature” using

a capitalized generic name followed by a lowercase species epithet [Knapp, 2000].

For the European goldenrod, the binomial nomenclature results in Solidago[GENUS]

virgaurea[EPITHET ]. Nonetheless, several parallel and often incompatible naming

conventions such as the Phylogenetic Nomenclature [Cantino et al., 1999] exist at

present. Over the past, the effort of individual botanists to name local plants, re-

sulted in synonymous and alternative names beyond number. Among taxonomists
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and botanists this unfortunate situation is also referred to as the “names prob-

lem” [Boyle et al., 2013; Patterson et al., 2010]. The largest challenge is homotypic

synonymy, describing the existence of multiple names for one species, a situation

that prevents new information and research on the same taxon being indexed to the

same taxonomic instance [Boyle et al., 2013; Patterson et al., 2010]. Heterotypic syn-

onymy, on the other hand, occurs when different taxa are treated as being the same

identical species [Patterson et al., 2010]. In addition to that, we might encounter

lexical variants, misspellings and the phenomenon of homonymy, which is the case

when the same name is used to refer to different distinct taxa [Boyle et al., 2013].

According to Boyle et al. [2013], 5% to 20% of all published names are synonymous,

which makes taxonomic standardization a cumbersome and error-prone task. The

following names described by different botanists, for instance, all refer to the fragrant

herb ‘lemon verbena’ (homotypic synonymy): Aloysia sleumeri, Aloysia citrodora,

Aloysia triphylla, Lippia triphylla, Lippia citrodora, Verbena triphylla, Verbena cit-

rodora, Verbena fragrans, Zappania citrodora. Among these, the currently accepted

scientific name according to the international reference database Catalogue of Life

(CoL) is Aloysia citrodora [Roskov et al., 2018].

In this project, we address this “names problem” [Boyle et al., 2013; Patterson et al.,

2010] from a pragmatic perspective: How do these “names” look like in natural lan-

guage, in which contexts do they occur, what shape and orthographic properties

do they have, and how can we reliably identify and disambiguate them? To model

such shape-based and context-related evidence, we use character-level and token-

level distributional information [Mikolov et al., 2013] to represent our input data.

We then apply state-of-the-art neural methods for named entity recognition (NER)

[Lample et al., 2016] to train multiple German and English models with the goal

to automatically identify individual tokens or sequences of tokens referring to either

vernacular or scientific names. Finally, we explore possible ways to disambiguate

these name occurrences in natural language and to interlink them to unique entries

in botanical knowledge bases. We hope that the comprehensive integration of ver-

nacular names into international databases contributes to open up the domain of

botany to a broader public that might be only familiar with vernacular names.

2.2 Named Entity Recognition

Named entity recognition (NER) is an essential subtask of information extraction

and natural language processing and understanding with the central concern of

finding sequences of tokens that constitute an information unit referring to a named
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entity [Nadeau and Sekine, 2007; Jurafsky and Martin, 2018]. Besides different

recent neural architectures, the NER task has also been approached using various

rule-based, dictionary-based or first generation machine-learning techniques [Tjong

Kim Sang and De Meulder, 2003], which we will briefly introduce and compare in

this chapter. Due to the two-sided nature of the task, NER is often also referred

to as NERC (“named entity recognition and classification”) [Nadeau and Sekine,

2007]. The initial stage of the NER task focuses on the detection of named entities

in text whereas the second substep aims at classifying the detected instances into

an according entity class such as “person”, “organization” or “location” [Nadeau

and Sekine, 2007]. Depending on the target domain and the specific application,

these entity classes or types can be coarse-grained or fine-grained and involve from

three basic categories (person, organization, location) up to 200 distinct classes

[Nothman et al., 2013; Ekbal et al., 2010; Ratinov and Roth, 2009; Nadeau and

Sekine, 2007]. The main challenges of the NER task are type ambiguity (an entity

might refer to different possible referents in the real world) and the ambiguity of

segmentation [Jurafsky and Martin, 2018]. Commonly, NER approaches rely on

word-by-word sequence labeling to assign IOB tags marking the boundaries (Inside,

Outside, Beginning) and the entity type of the mention [Sang and Veenstra, 1999;

Ratinov and Roth, 2009; Jurafsky and Martin, 2018].

In this project, we apply the standard neural algorithm for NER, namely a bidirec-

tional LSTM (originally coined by Hochreiter and Schmidhuber [1997]) with a final

CRF-layer. More specifically, we work with the bi-LSTM-CRF architecture proposed

by Lample et al. [2016] using character-level and token-level word representations as

input information. This neural approach to NER is both domain-independent and

language-independent and does not resort to hand-engineered features or knowl-

edge resources during training [Lample et al., 2016; Ma and Hovy, 2016]. When

processing morphologically rich languages such as German, character-level word

representations are particularly beneficial and refine the models with regard to lan-

guage, domain, and text genre [Lample et al., 2016; Ling et al., 2015]. Similar to

weakly and semi-supervised approaches, we use large gazetteers of plant names for

the initial dictionary-based annotation of our training material, which is then used

as high-quality input material for the bi-LSTM-CRF.

2.2.1 Rule-Based versus Dictionary-Based Approaches

Early named entity recognition (NER) approaches make use of handwritten rules,

algorithms, or patterns to detect named entities in running text [Nadeau and Sekine,

2007]. Due to the time-consuming task of creating and adapting such rules and the
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resulting non-applicability to new domains and text genres, rule-based systems have

largely been replaced by machine learning techniques especially in academic research

[Chiticariu et al., 2013]. In contrast, botanical rule-based systems such as FAT

(Find All Taxon Names) [Sautter et al., 2006] dealing with the detection of Linnean

plant names and systematic Latin suffixes can achieve satisfying results. Especially

with regard to entities following a predefined orthographic pattern or limited sets of

entities in a specific domain, rule-based or hybrid systems work reliably in real-world

applications [Chiticariu et al., 2013].

As opposed to rule-based systems, dictionary-based NER systems heavily rely on

extensive gazetteers (also called “lists”, “lexicons” or “dictionaries” [Nadeau and

Sekine, 2007]) that need to be constantly expanded as soon as new entities are

coined in a language. Such systems perform lookups in domain-specific dictionaries

to detect and annotate the entities of interest [Shinzato et al., 2006]. To reduce the

effort and resources needed for manually annotating large corpora for further train-

ing tasks, such dictionary-based methods can be a promising approach for specific

domains [Nadeau and Sekine, 2007; Shinzato et al., 2006]. According to Basaldella

et al. [2017], hybrid approaches can be beneficial for specific domains such as bio-

medicine: Such approaches usually combine a dictionary-based system for entity

candidate generation with machine learning methods to filter and select relevant

candidates.

Similarly, in our project we are using a dictionary-based NER system to generate

automatically annotated, high-quality training material. Even though we did not

fully automatically construct the final dictionaries as demonstrated by Shinzato et al.

[2006], we managed to avoid time-consuming manual annotation and to generate a

large silver-labeled corpus for the subsequent neural training.

2.2.2 Weakly and Semi-Supervised Learning Approaches

Other information extraction (IE) approaches use bootstrapping techniques to ex-

tract semantic resources from text in an iterative setting [Curran et al., 2007]. It-

erative learning settings exploiting contextual patterns and morphological evidence

achieve promising performance, especially with regard to language-independent ap-

plications [Cucerzan and Yarowsky, 1999]. To avoid time-consuming and knowledge-

intense manual annotation, weakly and semi-supervised approaches use seed lists of

named entities during the annotation stage [Grave, 2014]. The resulting automat-

ically labeled positive examples can then be used for supervised training. Fully

unsupervised approaches for information extraction, on the contrary, do not rely on
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feature engineering and labeled examples or seed terms but apply recursive extrac-

tion methods to retrieve new entities, relations or attributes [Etzioni et al., 2005].

Our method is also inspired by weakly and semi-supervised approaches: Instead

of using seed lists of named entities for annotation [Grave, 2014], we integrate a

dictionary-based annotation system into our pipeline. We use the resulting auto-

matically labeled positive examples to train a bi-LSTM-CRF [Lample et al., 2016]

in a supervised learning setting. In this way, we avoid devoting excessive time and

resources to expensive expert-knowledge required for manual annotations.

2.2.3 Supervised Machine Learning Approaches

Prior to the neural generation of named entity recognition (NER) systems, the task

has been approached using several supervised learning techniques. The predominant

supervised learning methods include maximum entropy (ME) [Bender et al., 2003],

hidden or conditional Markov models (HMM or CMM) [Morwal et al., 2012; Jansche,

2002], support vector machines (SVM) [Ekbal and Bandyopadhyay, 2010], decision

trees [Paliouras et al., 2000], and conditional random fields (CRF) [Sato et al., 2017;

Tjong Kim Sang and De Meulder, 2003]. Usually, in such learning settings all input

observations are associated with a correct label in a large training corpus in order

to learn and extract features given some contextual information during training

[Jurafsky and Martin, 2018]. This supervised machine learning setting associating

an expected output label y to each input observation x also applies to the neural

generation of algorithms tackling the NER task, on which we will focus in the next

subsection. In our approach, the expected output label y corresponds to the silver

standard entity label that has been automatically generated during the dictionary-

based annotation system.

2.2.4 State-Of-The-Art Neural Named Entity Recognition

Neural architectures using distributional embedding information as input have be-

come increasingly important to efficiently solve sequence tagging tasks in natural

language processing [Huang et al., 2015; Ma and Hovy, 2016]. Early neural ap-

proaches for named entity recognition (NER) include voted perceptrons [Carreras

et al., 2003] and recurrent neural networks [Hammerton, 2003]. The network archi-

tecture based on the “long short-term memory” (LSTM) method coined by Hochre-

iter and Schmidhuber [1997] has proven to work particularly well on a series of

natural language processing tasks, including NER. This network architecture repre-
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sents a powerful and more complex variant of conventional recurrent neural networks

(RNN). Instead of the commonly used hidden layer updates, the LSTMs make use

of “purpose-built memory cells” [Huang et al., 2015] in combination with input,

output and forget gates to remove information that is no longer needed and, in

addition, to keep information that might be useful for subsequent decisions [Hochre-

iter and Schmidhuber, 1997; Huang et al., 2015]. Hence, non-local dependencies

and information encoded in distant context can be identified and modeled success-

fully. In particular for named entity recognition, bidirectional LSTM architectures

in combination with a conditional random field (CRF) layer achieve state-of-the-art

performance in a supervised learning setting [Huang et al., 2015; Lample et al., 2016;

Strauss et al., 2016]. Neural learning methods use word embeddings to represent

the input data and to embed each observation in its left (l) and right (r) context

in the bi-LSTM encoder (see Figure 1). Consequently, this bidirectional network

architecture allows us to make use of past and future features encoded in the in-

put representation [Huang et al., 2015]. On top of the bi-LSTM output, a CRF

layer combines past input features from the LSTM-layers and tag information on

the sentence level [Huang et al., 2015; Lample et al., 2016].

Figure 1: Bidirectional LSTM-CRF architecture from Lample et al. [2016].

In summary, such bidirectional LSTM-CRF models making use of past and future

contextual input information can achieve state-of-the-art performance not only for

the NER task, but also for part-of-speech-tagging and chunking tasks [Huang et al.,

2015]. Thanks to past and future global contextual information from the input

representation, any local labeling decision relies on non-local contextual evidence.

During training, the neural system tries to estimate the expected outcome as it is
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labeled in the annotated corpus. While a loss function models the gap between the

prediction and the true output, a stochastic gradient descent optimization algorithm

tries to find patterns and parameters in the data minimizing the loss function and,

at the same time, maximizing the probability of a correct prediction [Huang et al.,

2015; Jurafsky and Martin, 2018]. Nonetheless, it should be mentioned that such

techniques are prone to overfitting and often fail to generalize well to unseen data.

This is because the network tends to memorize the input training data and the shape

and quality of the labeled entities [Hinton et al., 2012; Srivastava et al., 2014].

In our experiments, we explore several parameters of the bi-LSTM-CRF architecture

and the resulting impact on the model performance for the task of identifying and

correctly classifying botanical entities in multiple text genres. To assess the tendency

to overfitting, we conduct experiments in a cross-corpus evaluation setting and test

the model performance on unseen data from different genres (see Section 4.3) and

on a held-out test set containing articles about fungi (see Section 4.4).

2.3 Botanical Databases and Entity Recognition

The existence of alternative name variants poses considerable challenges to the task

of automatically identifying taxonomic entities in botanical knowledge-extraction

[Boyle et al., 2013]. Multiple international standardization projects are devoted to

address this issue by providing comprehensive check lists compiled from international

taxonomic databases and resources.

2.3.1 Botanical Knowledge Bases

The Catalogue of Life (CoL) is the most comprehensive and authoritative online

database with approximately 1.8 million catalogued organism species, including an-

imals, plants and fungi [Roskov et al., 2018]. Not only does this institution provide

an accurate, accessible, comprehensive, and international web service for private

botanists and researchers, it also represents a platform for sharing and validating

species names to document global biodiversity. Besides multiple global biodiver-

sity projects such as the Global Biodiversity Information Facility (GBIF) [GBIF,

2018], the Encyclopedia of Life (EoL) [Hogan and Taub, 2011] or the International

Union for Conservation of Nature’s (IUCN) red list of threatened species [IUCN,

2018], totally 168 international databases contribute to this resource. Apart from

proposing an internationally accepted scientific name for each species, it also lists

outdated variants and, especially for English, associated vernacular names. The

12



Chapter 2. Related Work

International Plant Name Index (IPNI) provides bibliographical information about

species from the seed plants, ferns, and lycophytes (spore-bearing vascular plants)

[IPNI, 2012]. However, it does neither highlight currently accepted names nor does

it list synonyms, vernacular names or spelling variants. The Encyclopedia of Life

(EOL) [Hogan and Taub, 2011] gathers accessible knowledge (e.g. information about

the habitat, geographic distribution or available images and publications) about any

form of life on this planet and uses the annual CoL-checklists as a taxonomic data

backbone [Roskov et al., 2018; Hogan and Taub, 2011]. The Multilingual Multiscript

Plant Name Database (MMPND) [Porcher, 1999] is a distributed plant database

containing scientific and non-scientific names of plants and fungi in 70 languages

and 25 scripts. Regarding German, the MMPND contains only a few vernacular

names for the genus Brassica (‘cabbage’). The Germplasm Resources Information

Network (GRIN) taxonomy project [Wiersema, 2018] includes 46,000 plant species

with a strong focus on vascular plants of economic relevance. The Global Biodiversity

Information Facility (GBIF) is a global network of participating countries and insti-

tutions hosting geo-referenced international biodiversity data, which can be used to

assess the distribution of specimen records [GBIF, 2018]. The uBio-project [Norton

et al., 2018] aims at providing a comprehensive catalogue to find information on

living and once-living organisms. In the NameBank project, Patterson et al. [2006]

focus on the importance of taxonomic indexing to manage data and research related

to biology in the era of big data. In particular, taxonomic indexing enables the

reconciliation of synonymous alternative names and the disambiguation of identical

species names used for distinct taxa.

We adopt the latest annual CoL checklist [Roskov et al., 2018] to automatically

extract botanical entities on different taxonomic levels. Especially with regard to

Latin names and English vernacular names, this resource was of inestimable value

for the creation of our gazetteers. For the sake of completeness, we also retrieve

the available scientific and vernacular entities from other biodiversity data resources

and delete potential duplicates from the final gazetteers. In the final project stage,

we use the CoL webservice for entity linking.

2.3.2 Botanical Entity Recognition and Information Extraction

The recognition and extraction of botanical entities has been addressed with a strong

focus on scientific Latin plant names. Several online tools have been made available

to the research community to approach the difficult task of extracting domain-

specific entities and associated information on different levels of granularity from

text resources. In the following, we aim at giving a brief overview on existing
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projects, methods, and resources in the field of botany and biodiversity informatics.

SPECIES [Pafilis et al., 2013]: The SPECIES -tool includes a dictionary-based

approach to NER for the recognition of plant taxa in biomedical literature. Un-

like rule-based systems using pattern-based sequential evidence (e.g. upper-case or

lowercase, presence of typical Latin suffixes), dictionary-based tools mainly rely on

string matching and dictionary-lookups. Especially when it comes to the recognition

of multifaceted, language-specific vernacular names or alternative species names,

dictionary-based tools outperform exclusively rule-based tools [Pafilis et al., 2013]

(e.g. TaxonGrab [Koning et al., 2005] and FAT [Sautter et al., 2006]). They do,

however, heavily rely on comprehensive plant name lists (also called gazetteers or

dictionaries) of organism names that need to be constantly updated as soon as

new scientific and vernacular entities are coined and used. As compared to other

dictionary-based approaches, the SPECIES tool has the advantage of being much

faster and more precise as compared to existing tools. Other dictionary-based ap-

proaches are LINNAEUS [Gerner et al., 2010], AliBaba [Plake et al., 2006], Whatizit

[Rebholz-Schuhmann et al., 2008] and the OrganismTagger [Naderi et al., 2011]. As

opposed to these dictionary-based systems, we only use the gazetteers to automati-

cally create a silver-labeled training dataset. In addition, we sustain that botanical

NER should not only be applicable to scientific text genres, but also to multilingual,

heterogeneous text resources and genres.

Taxonfinder [Leary, 2014]: This online tool employs a dictionary-based approach

to identify Latin taxonomic mentions of different taxonomic ranks such as phylum,

class, order, family, genus and species. This feature is, in our eyes, especially useful

when extracting hierarchical taxonomic relations and automatically constructing

taxonomies. Taxonfinder is not only limited to the kingdom of plants, it also detects

other scientific organism names. The detection of entities on a vernacular level has,

however, not been addressed in this approach.

gnparser [Mozzherin et al., 2017]: This approach uses parsing methods to detect

scientific plant names of varying degrees of structural complexity. In this man-

ner, authorship information can be included as a valid component of more complex

botanical entities. This tool can be valuable for taxonomists and biodiversity infor-

maticians working with scientific plant names and information that can be derived

from the attached authorship information. As opposed to the other approaches,

the focus of this project mainly lies on correctly decomposing and analyzing the

structure and composition of Latin plant names.

TNRS [Boyle et al., 2013]: The Taxonomic Name Resolution Service (TNRS) di-

rectly addresses the previously mentioned “names problem” [Boyle et al., 2013].
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This approach uses name parsing and fuzzy matching to identify spelling errors,

alternative spellings and outdated names and maps the variant to a currently ac-

cepted name version in a reference database. Primarily when dealing with taxonomic

standardization and name normalization for international botanical standards, this

approach represents a trustworthy tool to resolve synonyms, homonyms and spelling

variants. While the TNRS can serve as a trustworthy resource for taxonomic stan-

dardization and name normalization, outdated spelling variants and synonyms on a

vernacular level have not been considered.

GNA [Patterson et al., 2010]: The Global Names Architecture (GNA) is a valuable

webservice to index scientific names and interconnect distributed information from

different resources about species. The integrated global names resolver parses sci-

entific input names and links them to a corresponding entry in a reference database

or ontology. In our project, we use the more comprehensive Catalogue of Life (CoL)

database and webservice to disambiguate and link the entity candidates.

NetiNeti [Akella et al., 2012]: Besides rule-based and dictionary-based approaches,

different machine learning methods have been used to address the task of information

extraction and text mining. The tool NetiNeti uses probabilistic machine learning

methods, more specifically, Näıve Bayes and Maximum Entropy, to recognize sci-

entific plant names and to discover new species names from text. The approach

uses distributional evidence derived from contextual features and orthographic evi-

dence to detect plant names in text. Similar to our approach, orthographic patterns

and contextual evidence are used to predict whether or not a certain sequence of

tokens corresponds to a plant name. Our neural models, conversely, do not rely

on hand-crafted features and domain-specific context knowledge for feature extrac-

tion as in this approach. Consequently, the adaptation to new text genres and

related domains might include work-intense feature adaptation and re-engineering.

A promising aspect, that we also pursue in our work, is the recognition of name

variants despite spelling and OCR-errors that are likely to occur especially when

dealing with historical text material [Sharma et al., 2017].

Biomedical NER [Habibi et al., 2017]: Since neural models are capable of recog-

nizing new, unseen entities that did not occur in the training data [Ni and Florian,

2016], they are particularly interesting for text mining and the extraction of new

entities, for instance, new species names. The independence of neural models from

hand-crafted, domain-specific features and their ability to generalize from examples

and contextual information represents a considerable advantage over rule-based and

dictionary-based approaches and feature-based machine learning methods [Lishuang

Li et al., 2015; Ma and Hovy, 2016]. Habibi et al. [2017] apply the bi-LSTM-CRF ar-
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chitecture proposed by Lample et al. [2016] to identify several biomedical entity types

such as genes, proteins, diseases, chemicals and cell lines. In addition, they present

an evaluation of the tagger’s performance with regard to Latin species names that

have been automatically annotated using the SPECIES -tool [Pafilis et al., 2013].

The examples presented in the analysis are, however, limited to non-botanical en-

tities and, contrary to our approach, they do not apply fine-grained hierarchical

entity labels. Another example for neural, domain-specific NER in the domain of

bio-informatics has been presented by Lishuang Li et al. [2015]. This approach ap-

plies an extended recurrent neural network (RNN) to extract biomedical information

which, in their case, is able to outperform CRF-based implementations. As opposed

to our approach, no multilingual models are trained and the focus lies on scientific

plant mentions on the taxonomic level of species.

2.4 Entity Linking

In the context of information extraction, the entity linking (EL) task has become

increasingly important for several domains [Shen et al., 2015; Rao et al., 2013; Mc-

Namee and Dang, 2009; Bunescu and Pasca, 2006]. Entity linking or grounding,

record linkage or entity resolution primarily involves mapping a sequence of tokens

to a unique entry in a knowledge base for semantic disambiguation [Rao et al., 2013;

Hachey et al., 2013; Cucerzan, 2007]. The detection and disambiguation of entity

mentions in unstructured text is essential for the integration of knowledge derived

from large text corpora and the subsequent population of knowledge bases [Dredze

et al., 2010; Zheng et al., 2010]. Wikification approaches are based on Wikipedia

as a backbone knowledge base in order to automatically link textual mentions to

encyclopedic knowledge [Mihalcea and Csomai, 2007; Cucerzan, 2007]. Similar to

the task of word sense disambiguation (WSD), EL deals with the resolution of lexi-

cal ambiguity of language [Moro et al., 2014; Navigli and Moro, 2014]. While WSD

aims at matching a word form to an associated unique word sense in a reference dic-

tionary, EL is concerned with linking textual mentions to entities or concepts in a

reference encyclopedia [Moro et al., 2014; Navigli and Moro, 2014; Rao et al., 2013].

Due to anaphorical structures, synonyms, or abbreviated variants, the reference en-

tity might not always exactly match the mention from the text [Moro et al., 2014;

Rao et al., 2013]. As opposed to prevailing graph-based entity resolution approaches

[Moro et al., 2014; Hachey et al., 2013, 2011], recently, neural end-to-end approaches

have been proposed to jointly detect and link entity mentions in text [Kolitsas et al.,

2018]. Oppositely, disambiguation-only approaches [Sheng et al., 2017] focus on the
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disambiguation of gold standard named entities to a correct database entry. Raiman

and Raiman [2018] propose DeepType as a multilingual system for entity linking

by integrating symbolic knowledge. This knowledge comprises abstract type con-

straints, such as mutually exclusive types: IsHuman ∧ IsPlant = {} (example from

Raiman and Raiman [2018]). As a next step, they train a neural network on the

formulated type system. Regarding domain-specific entity linking, approaches for

gene, molecule, protein or organism normalization deal with the challenge of linking

multifaceted entities to unique and internationally accepted identifiers in domain-

internal databases to automatically extract structured knowledge from the current

literature [Sheng et al., 2017; Morgan et al., 2008]. In summary, the core challenges

of the EL task are name variations including abbreviations and alternative forms,

mentions that match multiple identifiers in a reference database (entity ambiguity)

and the absence of entity entries even in large knowledge bases [Shen et al., 2015;

Rao et al., 2013; Zhang et al., 2010].

In the context of linked open data (LOD), aggregating and interlinking botani-

cal and biodiversity knowledge is a powerful way to collaborate sustainably and

to gradually populate international knowledge bases with existing and new, dis-

tributed resources [Minami et al., 2013]. The common resource description frame-

work’s (RDF) triple data structure guarantees machine-understandability, interop-

erability, and precise searchability [Bizer et al., 2008; Lehmann et al., 2015; Chiar-

cos et al., 2011; Minami et al., 2013]. Accordingly, data, results, and resources

across multiple fields of research can be searched, extended, and re-used. Botany

and biodiversity research commonly employ the simple knowledge organization sys-

tem (SKOS) vocabulary [Miles et al., 2004], an RDF application, to model taxo-

nomic concepts, semantic relationships, and properties of organisms. With this in

mind, our project aims to enhance the automatic extraction and inter-linkage of

vernacular and scientific entities. Further steps could include the automatic ex-

traction of RDF triples from historical and current botanical literature, e.g. daisy

hasScientificName Bellis perennis, daisy hasAlternativeName bruisewort

or also authorXY usesVernacularName daisy.

In the final stages of our project, we apply entity linking to disambiguate and in-

terlink the entity candidates proposed by the language-specific neural models. As

previously mentioned, we use the internationally accepted Catalogue of Life (CoL)

webservice for the task of entity linking. The resolution of vernacular names and

the subsequent mapping to a domain-specific database is, in our eyes, crucial to au-

tomatically access botanical knowledge and to enrich currently existing knowledge

bases with naming variants and multilingual vernacular names.
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3 Tagging Plants: Methods and Tools

In this chapter, we illustrate our overall approach and its substeps (see Figure 2).

Regarding data collection, we describe the aggregation of extensive gazetteers (Sec-

tion 3.1.1), which were used to automatically create the silver-annotations, and

the digitization of historical botanical works in order to integrate different spelling

variants and older vernacular names (Section 3.1.2). We then specify the language-

specific text material used for the creation of four distinct datasets per language

(Section 3.1.3). Subsequently, we present the tools and data formats used during

data preparation and the individual steps involved in the preprocessing pipeline

(Section 3.2). We then introduce our tailored dictionary-based annotation system

and the pattern-based, semi-automatic corrections required for the final version of

the annotated datasets (Section 3.3). In this context, we point out the importance

of a manually corrected gold standard, necessary to assess and evaluate the true

model performance (Section 3.4). We briefly sketch the preparatory steps involved

in the successful application of the bi-LSTM-CRF architecture by Lample et al.

[2016] that we will be using to train multiple models.

Figure 2: Methods, tools and resources used at different stages in this project.
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3.1 Data Collection

3.1.1 Gazetteers

The manual annotation of training material is time-consuming and requires expert

knowledge. Therefore, we compiled language-specific plant name lists, also referred

to as gazetteers, lexicons or dictionaries - terms that are often used interchangeably

in the context of named entity recognition (NER) [Nadeau and Sekine, 2007]. Since

vernacular plant names are mainly concentrated on the taxonomic levels of species

and family names, we divided the gazetteers for English and German into two dis-

tinct files for the entity classes species and family respectively.1 The scientific plant

names follow more systematic suffix patterns directly related to the taxonomic level

they belong to and are thus easier to classify: The suffix pattern -phyta is typical

for plant divisions (phylum) whereas the suffix -opsida is characteristic for plant

classes. We divided the Latin names according to their specific suffixes into seven

distinct hierarchical classes in separate files (lat species, lat family, lat genus,

lat subfamily, lat class, lat order, lat phylum). We removed all duplicate

names from the final gazetteers, both within and across the single gazetteer files. In

the case of an ambiguous duplicate item, we focused on its etymology (Latin or Ger-

man/English) and on the potential existence of a semantically equivalent vernacular

name. For instance, the Latin genus names Adonis, Curcuma, Monarda, Rhododen-

dron, Stevia are frequently used as such in German. Their etymological origin is

the Latin form and equivalent vernacular names exist in German as well: Adon-

isröschen (‘yellow pheasant’s eye’), Kurkuma, Kurkume or Gelbwurzel (‘turmeric’),

Monarde (’crimson beebalm‘), Rhododendren (‘rhododendron’), Süßkraut, Süßblatt,

or Honigkraut (‘sweetleaf’).

In total, we created seven gazetteers for Latin plant names and two separate files each

for German and English. The unique gazetteer file name serves as an annotation

class label and is combined with the corresponding positional information (I for

inside, O for outside and B for beginning [see Section 3.3]). An example: The

system detects the token Amygdalus in a sentence, which matches an entry of the

Latin genus gazetteer. Accordingly, it assigns the tag B-lat genus.

Table 2 illustrates the distribution of the plant names including the generated vari-

ants per gazetteer and per language. It should be mentioned that the number of

German family names is higher due to the automatic insertion of possible variants

1Vernacular names on the taxonomic level of subfamilies or phylum are rarely verbalized in a
language. On the taxonomic level order, one can find German expressions such as “Zauber-
nußartige” (Hamamelidales). We included such cases in the vernacular family gazetteer.
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(see Subsection 3.1.1.3). Furthermore, the English language frequently employs

Latin family names instead of vernacular plant names, which explains the smaller

number of family names as compared to the German and Latin gazetteers.

species family genus subfamily class order phylum

Latin 2,152,656 1,292 31,617 262 47 203 25

German 63,932 3,873 / / / / /

English 67,124 444 / / / / /

Table 2: Gazetteer sizes for vernacular (species and family) and scientific names
(species, family, genus, subfamily, class, order and phylum).

For the sake of clarity, we would like to stress that the large number of Latin species

also includes abbreviated forms such as B. perennis (Bellis perennis).

3.1.1.1 Scientific Gazetteers

For the creation of the scientific gazetteers, we aggregated multiple large freely

accessible and up-to-date check lists or downloadable archives provided by institu-

tions such as the Catalogue of Life (CoL) [Roskov et al., 2018], the Global Biodi-

versity Information Facility (GBIF) [GBIF, 2018], the International Plant Name

Index (IPNI) [IPNI, 2012], and the Multilingual Multiscript Plant Name Database

(MMPND) [Porcher, 1999]. The CoL, for example, offers the Darwin Core Archive

format to export parts of the database. We parsed the resulting data structure and

automatically stored each name on a single line.2 These comprehensive, albeit not

complete, botanical databases do not only list currently accepted Latin names, but

also include outdated synonyms or accepted spelling variants. For better coverage,

we included all possible variants in the final Latin gazetteers, since discarded syn-

onyms might occur especially in non-scientific text genres such as blog articles or

historical literature.

3.1.1.2 Vernacular Gazetteers

The creation of the German gazetteer has proven to be more challenging: Due to

the lack of large, comprehensive gazetteers including synonyms and spelling vari-

ants in German-speaking regions, we combined several structured (tab-separated or

2See Appendix C for the Python scripts used to create the gazetteer files.
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comma-separated files), semi-structured (Wikipedia articles) and un-structured data

resources (digitized botanical works). Besides multiple small resources kindly pro-

vided by private experts and botanists, we also retrieved numerous common names

from the trivial names section (if existent) in the Wikipedia category “Vascular

plants of Germany” using the API.3 Other valuable resources were provided by sev-

eral institutions in German-speaking regions concerned with biodiversity such as Info

Flora [Aeschimann and Heitz, 2005], local botanical gardens or private botanists.

For English, we used the Multilingual Multiscript Plant Name Database (MMPND)

[Porcher, 1999] to retrieve additional vernacular names. Subsequently, we used the

Catalogue of Life (CoL) [Roskov et al., 2018] to extract the available vernacular

names for German and English. We noticed, however, that this resource does not

employ language tags consistently. For instance, grassflower has been tagged as

[English] and pond cypress as [Eng]. Moreover, German language tags were of-

ten missing in the CoL archives. For this reason, we used the langid-module for

Python [Lui and Baldwin, 2012] to double-check the original language of the ver-

nacular name. Other valuable resources for this project stage were the vernacular

names provided by the botanical databases Germplasm Resources Information Net-

work (GRIN) [Wiersema, 2018] and Global Biodiversity Information Facility (GBIF)

[GBIF, 2018] as well as the botanical dictionary entries kindly provided by the au-

thors from the online dictionary dict.cc. Lastly, we also extracted dialectal and

partially archaic variants of common plant names. For this purpose, we processed

and, if necessary, digitized several botanical works.4 In general, we avoided works in

blackletter typeface and manual post-corrections of the retrieved plant names but

especially when dealing with historical data and potential OCR-errors, some manual

corrections to ensure high-quality gazetteers were inevitable. Finally, we processed,

cleaned, and stored each resource separately in order to exclude noisy resources at

a later stage. Thus, we avoided the potential infiltration of noisy plant names into

the final gazetteers.

3.1.1.3 Generation of Name Variants

To increase coverage, we automatically added possible name variants to the gazetteers.

For the Latin entries, we generated the associated, abbreviated variants, which are

likely to occur in scientific text genres (see Example 1). For German, we created

additional variants by attaching or removing morphological endings and by splitting

3Original title: “Liste der Gefässpflanzen Deutschlands” [Wikipedia, 2018c]. For English, we used
the Wikipedia page “List of plants by common name” to retrieve additional vernacular names.

4See Appendix A for a full list of botanical works used for this project.
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compounds into their single components (3). To avoid the insertion of potentially

noisy data, we only covered the most frequent and systematic variants. This includes

adding morphological suffixes to German plant family names that usually end with

the form -Gewächse (‘plants’) or -Familie (‘family’) (2). Additionally, we merged

hyphenated compounds (3) resulting from the synthetic nature of the German lan-

guage and split the descriptive first component.5 The same applies to plant names

containing a descriptive adjective in the first position (4).

Plant name Translation Generated variants

1. Eugenia floccosa a species of myrtle E. floccosa

2. Sauergrasgewächse sedges

Sauergras-Gewächse, Sauergras-Gewächses,

Sauergras-Gewächsen, Sauergras-Gewächs,

Sauergrasgewächse, Sauergrasgewächses,

Sauergrasgewächsen, Sauergrasgewächs

3. Vogel-Sternmiere chickweed
Vogelsternmiere (merged)

Sternmiere (split)

4. Johannisbeere, Schwarze blackcurrant
Schwarze Johannisbeere (inverted full species name)

Johannisbeere (only genus name)

Table 3: Automatically generated name variants (abbreviations, split or merged
compounds, morphological variants) for German and Latin gazetteers.

3.1.2 Digitization of Botanical Works

As described in the previous section, precompiled, machine-readable gazetteers for

German plant names and their synonyms are not easy to find, particularly regarding

outdated spelling variants and historical synonyms. Therefore, we digitized multiple

historical botanical works in order to extract the vernacular names and variants used

by the author (see Appendix A). Other digitized works have been kindly provided by

plazi (Bern, Switzerland). We used the ABBYY R© FineReader software to extract

the text from the scanned works in PDF format. The PDFlib TET 5.1 software

package was a valuable tool to extract the XML or the raw text data from already

OCRed PDF documents. Depending on the quality and structure of the resulting

digitized version, we applied further customized processing steps to clean, extract,

and store the present plant names. Some works provide schematic name listings

5Pahler and Rücker [2001] published a set of rules to standardize the spelling of German plant
names by splitting the name part designating the genus with a hyphen. The writing style
in historical literature or by non-expert botanists, however, proves that the existing spelling
variants are often innumerable.
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that can be parsed using simple pattern matching (see Figure 3). In other cases, we

simply used the name index to extract the plant names.

Figure 3: Example for digitized botanical works from Madaus [1938] (left) and the
name index from Pfeiffer [1898] (right).

3.1.3 Training Corpora

In order to explore the behavior of neural named entity recognition with regard to

cross-corpus and genre-adaption performance, we collected training material from

four different text genres and writing styles. While scientific botanical literature

almost exclusively relies on the use of explicit Latin plant names or equivalent ab-

breviations, other text genres such as blog articles or mountaineering reports employ

a more informal and impulsive writing style and thus tend to use vernacular plant

names more frequently. We applied a modular design and processed each data re-

source independently to train separate models for each data resource and text genre.

This allows us to explore the impact of different parameter combinations on each

dataset and to analyze the cross-corpus generalization performance of the neural

models. For comparison, we created a supplementary combined dataset from all the

available resources. Table 4 reports the overall details for each corpus including the

number of tokens, types, and sentences.

Wiki Corpus: We created a corpus from German and English Wikipedia abstracts

describing plants of the vascular plant category. For this purpose, we iterated over

each plant listed in this Wikipedia category and used the API and a Python wrap-

per provided by Majlis [2017] to retrieve the introductory abstract for each article.

Scientific names are usually combined with vernacular names within one sentence,

which makes this resource particularly interesting and challenging for our project.
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Wiki TB PlantBlog BotLit/S800 Total/Average

domain Wikipedia articles mountaineering reports blog articles botanical literature

German English German English German English German English German English

number of tokens 330,119 330,495 52,265 5,359 13,212 17,289 886 24,773 396,428 377,916

number of types 34,384 27,354 13,319 2,022 3,971 3,392 493 4,203 52,167 36,971

mean token length 5.42 4.42 5.06 4.45 5.47 4.17 5.25 5.07 5.05 4.52

number of sentences 13,882 15,280 2,289 153 720 876 42 960 16,933 17,269

mean sentence length 23.78 21.62 22.83 35.02 18.35 19.73 21.09 25.80 21.51 25.54

Table 4: Corpus details for German and English datasets.

In this text genre, a systematic and structured writing style is usually employed

when describing a plant species or other taxonomic levels (see Table 5). Frequently,

listings of vernacular names are preceded by an explicit expression following the

patterns “common names include [...]”, “also known by the common name [...]‘” or

“the vernacular name is [...]”.6

PLANT NAME is a DESCRIPTION of the FAM NAME (or higher taxa)

Bellis perennis is a common European species of daisy of the Asteraceae family.

Die Gänseblümchen (Bellis) sind eine Pflanzengattung aus der Familie der Korbblütler (Asteraceae).

Table 5: Characteristic Wikipedia writing style when describing botanical entities.

TB Corpus: The Text + Berg corpus is an annotated linguistic corpus consisting

of digitized yearbooks of the Swiss Alpine Club (SAC) with mountaineering reports

in German/French/Italian/Romansh (SAC yearbooks), English (Alpine Journal),

and French (Echo des Alpes) [Volk et al., 2010]. For this corpus, we applied our

previously created gazetteers to select a subset of sentences from the German and

English part of the corpus release 151 [Bubenhofer et al., 2015]. This sub-selection

ensures that each sentence contains at least one scientific or vernacular plant name

mention and hence guarantees a high density of botanical entities in this training set.

For German, we extracted sentences from the time span of 1970 to 2015, whereas for

English, we only used material from 1980 to 2008 due to the restricted availability of

the recent years and the lower OCR quality of the older yearbooks. The writing style

is generally informal and, depending on the botanical expertise of the author and the

publication period, different types of plant names are used (see Table 6). An author

6The same applies to the German Wikipedia dataset where patterns, such as “gebräuchliche Volk-
snamen sind [...]” (‘common trivial names are’), “nur regional gebräuchlich sind die Trivialna-
men [...]” (‘the following trivial names are only locally known [...]’) or “weitere Trivialnamen
sind [...]” (‘additional trivial names are [...]’) occur frequently.
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might use, for instance, both vernacular and scientific names within one sentence

(1, 5), exclusively vernacular names (2, 6) or exclusively scientific names (rather for

Alpine Journal or older German yearbooks) (4, 7). Frequently, the writers combine

vernacular and scientific names in extensive listings (3, 4).

Sentence/

Translation
Source Year

1.
Um so schöner sind [...] die Wiesen mit Alatau-Schwingel (Festuca alatavica)

und der Segge Carex tristis.

Swiss Alpine Club (SAC)

Text+Berg corpus
1970

‘The meadows with Festuca alatavica and the Carex tristis sedge are even more beautiful.’

2.
Man [...] erblickt einen hellen, schlanken Campanile, daneben die schwarze Flamme

einer Zypresse.

Swiss Alpine Club (SAC)

Text+Berg corpus
1971

‘One sees a bright, slim campanile, next to the black flame of a cypress.’

3.

Bors Segge (Carex Born), Altai-Hungerblume (Draba altaica), Himalaya-Edelweiss

(Leontopodium leotopodinum), das zierliche Gras Colpodiuum himalaicum und

das Seidenhaarige Fingerkraut (Potentilla serı̀cea).

Swiss Alpine Club (SAC)

Text+Berg corpus
1970

‘Born’s sedge (Carex Born), nailwort (Draba altaica), Hamalayan edelweiss

(Leontopodium leotopodinum), the delicate weed Colpodiuum himalaicum

and the silk cinquefoil (Potentilla serı̀cea).’

4.
These include several species of Rhododendron, Hypericum, Buddleja, Syringa,

Berberis, Daphne and the delightful Clematis montana, and much more besides.

Alpine Journal

Text+Berg corpus
1991

5.
A widespread starry white-flowered mouse-ear (Cerastium trigynum),

a rather elegant gentian (G. stricta) [...].

Alpine Journal

Text+Berg corpus
1983

6.
The trees were the real enemy, old trees, young trees, rotten and burnt trees,

Douglas Firs, Jack Pines, Spruce, Poplar and Birch.

Alpine Journal

Text+Berg corpus
1990

7. The island, called Islota Caro, was covered in Desfontainia spinosa [...].
Alpine Journal

Text+Berg corpus
2008

Table 6: Example sentences for plant-related mountaineering reports from the Swiss
Alpine Club and the Alpine Journal (TB corpus [Bubenhofer et al., 2015]).

For our purposes, this corpus is highly interesting as it combines a descriptive and

poetic language with a passion for botany. Due to the diachronic dimension of the

corpus, the writing style is highly individual and depends on the specific author and

the publishing year. The Latin names used by the authors do not, however, always

coincide with the currently accepted names and are often outdated synonyms.

PlantBlog Corpus: This corpus consists of blog articles retrieved from the Internet

about plant-related topics such as gardening, phytotherapy, herbalism, or household

remedies. Blog authors usually employ an informal writing style and tend to use

vernacular instead of scientific plant names since not all potential readers might

be botanists or botanically-minded. An example of typical blog-writing style for

German (see Example 1) and English (2) regarding ginger (‘Zingiber officinale’):
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1. Vom Ingwer wird die Wurzel verwendet, er enthält überdurchschnittlich viele

ätherische Öle.

‘You can use the ginger’s root, it contains an above-average amount of essential

oils.’

2. The pain-relieving potential of ginger appears to be far-reaching.

BotLit/S800 Corpus: For the German part of this data resource, we manually

selected text passages from historical botanical literature containing a high concen-

tration of either scientific or vernacular plant names. Although being less extensive,

this dataset allows testing the performance of our models regarding old spelling vari-

ants or archaic names. We included text excerpts from Spescha [2009] containing

regional descriptions of flora and fauna, originally published in 1806. We also used

text snippets from Höhn-Ochsner [1986] and Bosshard [1978] containing folk sayings

with old vernacular names in several local dialects. The German part of the BotLit

corpus is particularly interesting because of the frequent use of non-standard names,

dialectal variants, and old spellings. For instance, Spescha [2009] uses “Weisthanne”

instead of the currently accepted forms “Weißtanne” or “Weiß-Tanne”for the Euro-

pean silver fir (Abies alba).

1. Unter dem Nadelholz zeichnet sich die Roththanne aus, [...] der Weisthannen

sind wenig [...]. [Spescha, 2009, 144-145]

‘Among the conifers European spruces are frequent, but there are only a few

silver firs.’

2. Rübli säe im Fisch und nidsichgehenden Mond [...]. [Höhn-Ochsner, 1986, 63]

‘You should sow the carrots in the zodiac sign pisces and when the moon is

waning.’

For English, on the other hand, we used the S800 corpus created by Pafilis et al.

[2013]. This data resource contains abstracts from different scientific fields such

as medicine, virology, and botany. For our experiment, we only used the subsec-

tion based on botanical abstracts, which almost exclusively contains Latin plant

name mentions. While vernacular names are less frequent in this corpus, scientific

names occur in diverse shapes, including abbreviations (1), extensive subspecies’ or

varieties’ names (2).

1. Seventeen natural populations of A. thaliana were geo-referenced in north-

eastern Spain [...].

2. Selenium (Se)-fortified broccoli (Brassica oleracea var. italica) has been pro-

posed as a functional food for cancer prevention [...].
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Table 7 illustrates the distribution of the annotated absolute and unique entity class

labels per language and dataset. For both languages, the usage of Latin plant names

from higher taxonomic levels such as class, order, and phylum is restricted to the

Wikipedia dataset. Text genres including mountaineering reports (TB corpus) and

blog articles tend to use vernacular names on the level of species and family as well

as Latin species, genus, and family names.

Wiki TB PlantBlog Botlit

German English German English German English German English

all unique all unique all unique all unique all unique all unique all unique all unique

de/en species 21,957 7,597 11,674 3,269 2,954 767 275 188 743 425 740 317 67 64 171 44

de/en fam 6,314 358 1,897 152 123 29 4 3 25 14 12 4 0 0 0 0

lat species 15,722 4,782 8,244 3,820 467 286 301 227 133 106 107 69 32 30 267 100

lat genus 4,957 1,422 4,569 2,717 105 66 74 50 35 29 45 28 4 4 54 12

lat fam 5,453 278 2,335 422 26 20 1 1 2 2 3 2 0 0 5 3

lat subfam 565 70 255 125 0 0 0 0 0 0 0 0 0 0 1 1

lat class 110 8 32 17 0 0 0 0 0 0 0 0 0 0 0 0

lat order 281 60 183 78 0 0 0 0 0 0 0 0 0 0 0 0

lat phylum 11 4 28 13 0 0 0 0 0 0 0 0 0 0 0 0

total 55,370 14,579 29,217 10,613 3,675 1,168 655 469 983 576 907 420 103 98 497 159

26% 36% 31% 71% 61% 46% 95% 31%

Table 7: Fine-grained classes of botanical entities annotated in each corpus.

3.2 Linguistic Preprocessing

In order to format and enrich the datasets with linguistic information before an-

notating the botanical entities, we applied several preprocessing steps. First, we

segmented the raw text data into single sentences and performed tokenization using

the Natural Language Toolkit (NLTK) [Loper and Bird, 2002] for German. We then

applied the TreeTagger [Schmid, 1995] to associate a lemma to all known tokens and

a <unknown> tag to all unknown tags. Simultaneously, we stored the respective

part-of-speech (POS) tag on the same line. For the linguistic annotation of the En-

glish datasets, we used the tokenizer and part-of-speech tagger of spaCy [Honnibal

and Montani, 2017], an NLP library for Python. For comparison, we also tested the

spaCy POS-tagging performance on the German data, but the tagging behavior on

German vernacular plant names has proven to be unsystematic.

3.2.1 Treatment of Botanical Abbreviations

Current NLP tools such as NLTK or spaCy are prone to errors when processing

domain-specific text genres, e.g. botanical literature. Typical botanical abbrevia-
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tions such as var., convar., ssp., subsp., and others7 are frequently treated as sentence

boundaries and are therefore split. Since these abbreviations are often part of Latin

plant names, e.g. in Cannabis sativa var. spontanea (‘hemp’) or Daucus carota subsp.

carota (‘wild carot’), this circumstance results in erroneous sentence segmentation

and truncated plant names. We corrected this unexpected behavior using a regular

expression to merge the plant names and the abbreviations (see Section 4.6.1).

3.2.2 The CoNLL-2003 format

For the subsequent training of the LSTM-CRF models, we used the CoNLL-2003

format [Tjong Kim Sang and De Meulder, 2003] to store the training corpora. This

data format is commonly used to approach the task of named entity recognition and

allows the association of multiple tags per data row and per token. The linguistic

information resulting from the preprocessing steps described above is stored in one

row (token, lemma, pos-tag) and separated by tabs while newlines represent sentence

boundaries (see Table 8). The rightmost entity tag encodes the annotated entity

label in IOB format [Tjong Kim Sang and De Meulder, 2003] (see Section 3.3.1).

3.3 Dictionary-based Annotation

The task of accurately identifying taxa in natural language has been approached us-

ing rule-based systems exploiting the schematic Linnaean name patterns or dictionary-

based systems using name lookups and string matching [Pafilis et al., 2013]. To

expand such current approaches from the recognition of merely Latin names to ver-

nacular names and alternative spellings, we integrated a tailored dictionary-based

annotation system into the annotation process. The shape and structural complex-

ity of vernacular plant names does not follow any systematic rules, e.g. Unechter

Veränderlicher Gold-Hahnenfuß (Ranunculus pseudovertumnalis). In this example,

the first two tokens are adjectives that might also occur in other, non-botanic con-

texts. Except for the characteristic uppercase, which is typical for all German nouns,

no systematic pattern matching rules can be applied to extract vernacular names

from text. Equivalently, multiword expressions are frequently used in English to

refer to plants, e.g. hen and chicks or hen-and-chickens (Jovibarba globifera and

other species).

7We considered the following botanical abbreviations (var., convar., agg., ssp., sp., subsp., x., L.,
auct., comb., illeg., cv., emend., al., f., hort., nm., nom., ambig., cons., dub., superfl., inval.,
nov., nud., rej., nec., nothosubsp., p., hyb., syn., synon. (after Meades [2018]).
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First, the dictionary-based annotation system checks if any name from the gazetteers

occurs within the current sentence. Next, it assigns the language tag (de, en or

lat) together with the correct taxonomic label (species, family, genus, subfamily,

class, order, or phylum) depending on the gazetteer file where the matching token

(or sequence of tokens) has been found. To store the information of the plant

entities found in a sentence, we used the IOB (Inside, Outside, Beginning) scheme

for annotation (see Table 8).

TOKEN LEMMA POS-TAG IOB-TAG

Der die ART O

Gefleckte gefleckt ADJA B-de species

Schierling <unknown> NN I-de species

Conium <unknown> NN B-lat species

maculatum <unknown> NN I-lat species

gehört gehören VVFIN O

mit mit APPR O

dem die ART O

Wasserschierling <unknown> NN B-de species

zu zu APPR O

den die ART O

Doldenblütlern <unknown> NN B-de fam

Table 8: Dictionary-based annotation of the datasets with language-specific labels
and taxonomic information encoded in the IOB tag.

3.3.1 The IOB tag scheme

The IOB tag scheme is widely used to represent single tokens or a sequence of to-

kens that can be grouped into non-overlapping and non-recursive text chunks, thus

constituting a semantic unit [Ramshaw and Marcus, 1995; Sang and Veenstra, 1999;

Tjong Kim Sang and De Meulder, 2003]. This annotation scheme indicates the be-

ginning (B), inside (I) and outside (O) of a named entity identified within a sentence.

Since Lample et al. [2016] did not observe significant improvements when using the

extended IOBES scheme, which also marks singleton entities (S) and endings (E),

we considered the IOB scheme to be sufficient for our experiment. We made sure

that the longest possible sequence constituting a plant name is annotated instead of

possible consecutive subsequences. In the following example, our annotation system

identifies “Datura stramonium” as the longest possible sequence and assigns two

consecutive tags, namely B-lat species followed by I-lat species (Example 1),
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instead of the possible subsequence “Datura” found in the lat genus list. The same

applies to the annotation of vernacular names: The German species name “Fieder-

schnittige Perowskie” represents a semantic unit even though it would be possible

to encounter the singleton “Perowskie” in other contexts (2).

1. Datura stramonium ist eher selten zu finden.

‘Datura stramonium can be rarely found.’

2. Die Fiederschnittige Perowskie ist ein Halbstrauch mit lilablauen Blüten.

‘Perovskia abrotanoides is a dwarf shrub with lilac-blue flowers.’

3.3.2 Pattern-Based Corrections

To ensure a higher quality of the training material, we semi-automatically corrected

vernacular multiword plant names that were systematically missed by our anno-

tation system due to morphological endings, structural complexity, or incomplete

gazetteers.8 For this purpose, we applied a regex search based on the part-of-speech

annotations to detect uppercase adjectives that were tagged as O (outside) and

precede a noun tagged as vernacular plant name (B-de species):

regular expression \n([A-Z]\w+\t.*?\tADJA\t)O\n(.*?\t)B-de species\n

replace pattern \n\1B-de species\n\2I-de species\n

Table 9: Find and replace pattern to systematically detect and annotate multiword
plant names missed by the dictionary-based annotation system.

For English, hyphenated compound names were a frequent reason for erroneous or

partial annotations, e.g. “yellow star-of-Cyprus” (Gagea juliae), “five-seeded plume-

poppy” (Macleaya cordata), “small-flowered touch-me-not” (Impatiens parviflora)

or “African weed-orchid” (Disa bracteata). In the final version of the annotated

datasets, we corrected these misannotations using either regular expressions, part-

of-speech patterns or manual corrections to guarantee high-quality training data.

8While the gazetteers comprise most generic nouns such as “Hahnenfuß” (Ranunculus), the species
members might not always be complete especially regarding rare species such as the “Wolliger
Hahnenfuß” or ‘downy buttercup’ (Ranunculus lanuginosus).
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3.4 Creation of Gold Standard

To evaluate the performance of the neural models on a high-quality gold standard,

we manually corrected one test fold of the silver-labeled combined dataset. The

combined dataset comprises random sentences from all four corpora. The size of

one test fold, in this case, equals to 76,783 tokens for German and 75,156 tokens for

English and represents approximately 20% of the combined dataset. Manual anno-

tation is highly time-consuming and requires expert knowledge in order to decide on

context-dependent and ambiguous cases (Example 1). For instance, in some cases

“Rhododendron” could be tagged as B-de species (2) while in other contextual

circumstances, the name should be tagged as B-lat genus (3):

1. Das ist eine Pflanzenart aus der Gattung der Sonnenwenden (Heliotropium).

‘This is a plant species from the genus Heliotropium.’

2. Ein kleiner Rhododendron macht sich hier ausgezeichnet.

‘A tiny rhododendron fits in perfectly.’

3. Alpenazaleen (Rhododendron) kommen oberhalb der Baumgrenze vor.

‘Snow-roses grow above the tree line.’

In total, we devoted approximately 10 hours to the manual annotation of each

language-specific gold standard. During evaluation, we applied the neural model

trained on the first training fold of the combined dataset in order to ensure that

none of the gold test sentences have already been seen during training. We present

a detailed comparison between the automatically annotated silver-standard and the

manually corrected gold standard in Section 4.1. This juxtaposition of the model

performance on silver-labeled and gold-labeled data allows us to additionally assess

the performance of the dictionary-based annotation system at different stages.

3.4.1 Annotation Guidelines

We applied general annotation rules to ensure consistent annotations throughout the

gold standard for German and English. First, we decided not to annotate German

compounds such as “Anis-Geruch” (‘anise smell’) or “Tomatenfrüchte” (‘tomato

fruits’), as the entire token does not refer to a plant in this case. Furthermore, we

consistently annotated the longest possible variant of a complex plant name as in

Lactuca sativa var. crispa (‘curled lettuce’). In other cases, we trusted our linguistic

expertise to disambiguate difficult cases depending on the context. As demonstrated

in Example 1, the German expression “Sonnenwende” (‘solstice’) also constitutes a
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vernacular name to denote the European turnsole (Heliotropium europaeum).9 If

necessary, we double-checked the existence of peculiar dialectal variants in German

such as “Stoh up und gah weg” used for the European centaury (Centaurium ery-

thraea) or “Traut Babbichen sieh mich an” for the common moonwort (Botrychium

lunaria). Similarly, we verified the existence of exotic English vernacular names

such as “Roan Mountain false goat’s beard” (Astilbe crenatiloba) or “Jack go to

bed at noon” (Tragopogon pratensis) in botanical reference works and annotated

the longest possible sequence of tokens in the gold standard datasets.

3.5 Application of the bi-LSTM-CRF Architecture

For our experiments, we applied the bidirectional LSTM-CRF architecture proposed

by Lample et al. [2016] to train multiple language-specific neural models for German

and English.10 To this end, we trained single-dataset models on the automatically

annotated datasets (Wiki, TB, PlantBlog, BotLit/S800 ) and a combined-dataset

model for both languages. To avoid overtraining, we applied 5-fold cross-validation

(80% training set, 20% test set) and used the average scores over all folds for final

model comparison (see Section 4.2). The corpora were split into individual folds

using the Python package scikit-learn [Pedregosa et al., 2011]. Due to the small

size of datasets such as the PlantBlog corpus or the German BotLit corpus, we

did not use a supplementary development set during training. In Section 4.2, we

give a detailed overview of the different parameter combinations used for training

such as number of epochs, word embedding dimension, integration of pre-trained

embeddings, hidden layer size, and character embedding dimension.

9Examples of sequences of tokens that formally refer to plants, but depending on the context they
may have a different meaning: “Baumwolle” (‘cotton’: plant vs. fabric), “Bergröte” (‘dyer’s
woodruff’: plant vs. afterglow).

10All neural models have been trained on the GPU-server of the Institute for Computational
Linguistics, Zurich.
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4 Neural Models: Results and

Evaluation

In this chapter, we present the results of our semi-supervised approach towards neu-

ral named entity recognition (NER) for botanical and biodiversity contexts. First,

we discuss the overall quality of the automatic annotations by comparing the manu-

ally corrected gold standard and the corresponding silver standard annotations (see

Section 4.1). We then present an overview of the parameters and dataset combi-

nations used for training before moving on to a detailed model evaluation from a

single-dataset and a cross-dataset perspective (Sections 4.2 and 4.3). We discuss

persisting sources of errors in the light of two subsequent training runs and explore

manifold factors such as the adoption of specific parameters, the quality of the train-

ing data, language-specific peculiarities, and the relative performance on the gold

standard data.

4.1 Evaluation of Semi-Automatic Annotations

In our experiments, we distinguish between two subsequent annotation and training

rounds. The initial version of the four training corpora after the first annotation

round, for instance, includes partial annotations or misannotations due to inter-

fering factors: Erroneous sentence segmentation caused by botanical abbreviations,

structurally complex named entities including hyphenated compounds, or multiword

expressions (MWE) and language-specific ambiguity. During the second annotation

round, we semi-automatically corrected these systematic sources of error based on

part-of-speech (POS) patterns or by re-merging those sentences that have been split

by the tokenizers using regular expressions. Last but not least, we double-checked

and, if necessary, corrected the most frequent and eye-catching ambiguous cases.

In the Sections 4.6.2 and 4.6.3, we conduct a detailed error analysis and discuss

structurally complex and ambiguous cases for German and English.
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An evaluation of the dictionary-based annotations led to the following results: For

German, the initial comparison of the dictionary-based annotations against the man-

ually corrected gold standard, showed an overall annotation accuracy of 95.44%

with an F1-score of 85.05% (see Table 10). In contrast, the final dictionary-based

annotation system in combination with semi-automatic, pattern-based corrections

improved the overall annotation performance with an accuracy of 98.03% (F1-score

93.70%). For the English dataset, the dictionary-based system achieved an accuracy

of 97.55% with an F1-score of 84.88% in the first round. After the second annotation

round, the evaluation showed an improved accuracy of 98.59% (F1-score 91.80%).

German English

A P R F A P R F

1st annotation round 95.44 89.10 81.36 85.05 97.55 90.95 79.57 84.88

2nd annotation round 98.03 96.84 90.76 93.70 98.59 94.58 89.19 91.80

Table 10: Accuracy (A), precision (P), recall (R) and F1-score (F) for dictionary-
based annotation system resulting from the direct comparison between
silver-labeled data and manually corrected gold standard.

The remaining mistagged or entirely missed instances are, in general, caused by

language-specific ambiguity or context-dependent usages. For the morphologically

rich language German, another frequent source of error are morphological suf-

fixes. As opposed to the German family name variants automatically added to

the gazetteers during the data collection stage, the species gazetteer usually only

comprises the base form of a species name. In the case of the toxic legume “Berg-

Spitzkiel” (‘locoweed’, Oxytropis montana), the nominative base form is present in

the gazetteer, but the plural “Berg-Spitzkiele” or the genitive form “Berg-Spitzkiels”

are missing. Thus, the dictionary-based annotation system fails to correctly anno-

tate such cases. To explore the generalization capacity of the neural models, we

avoided the integration of hand-crafted rules and manual corrections to match mor-

phological variants. Latin species names including additional information on the

infraspecies level, thus spanning over multiple tokens, are another common source

of error, e.g. Carex scirpoidea subsp. convoluta (example taken from Mozzherin et al.

[2017]). To sum up, the integrated dictionary-based annotation system achieved a

satisfying performance with F1-scores of >80% in the first annotation round and

>90% in the second annotation round, as evaluated on the manually corrected gold

standard for both languages.
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4.2 Individual Dataset Evaluation

In this section, we evaluate the model performance on the four corpora (Wiki, TB,

PlantBlog, BotLit/S800 ) in a single-corpus setting using the bi-LSTM-CRF archi-

tecture proposed by Lample et al. [2016]. We will assess the in-genre performance

for the single text types and explore the impact of manifold training parameters.

After introducing and motivating the baseline system in Section 4.2.1, we evalu-

ate the model performance across different text genres using 5-fold cross-validation.

More specifically, we discuss the resulting impact on the performance when using

pre-trained embeddings (pre emb) (Section 4.2.2), dropout training for better gen-

eralization ability (dropout) (Section 4.2.3), an augmented character embedding di-

mension (char dim) (Section 4.2.4) and a capitalization feature dimension (capdim)

(Section 4.2.5). We train a single-dataset model for each training dataset (Wiki, TB,

Blogs, BotLit/S800 ) and a mixed-dataset model trained on the combined resources.

Figure 4: F1-scores per dataset for single and combined models (pre-trained embed-
dings, dropout 0.5, char-embedding dimension 25). The error bars repre-
sent the standard error computed over the 5-fold cross-validation scores.

Figure 4 displays the average F1-scores for the individual and the combined datasets

based on the models trained using the 300-dimensional pre-trained FastText word

embeddings [Grave et al., 2018], a balanced dropout rate of 0.5 and a character

embedding dimension of 25. The error bars represent the standard error for each

average F1-score over the five cross-validation folds. As visible in Table 11, the

observable performance variability over the five folds is small for larger datasets
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such as the Wiki dataset or the combined dataset. Oppositely, we observed a large

variability of ± 7.61 for the German BotLit dataset (M = 28.19, SD = 17.01), which

contains only 42 sentences with partially historical name variants.

German English

F1-score

(AVG)
SD SE

F1-score

(AVG)
SD SE

Combined 94.92 0.12 0.05 Combined 86.55 0.87 0.39

Wiki 94.96 0.24 0.11 Wiki 87.35 0.62 0.28

TB 89.65 1.45 0.65 TB 58.20 6.03 2.70

PlantBlogs 84.23 1.16 0.52 PlantBlogs 78.99 2.36 1.06

BotLit 28.19 17.01 7.61 S800 86.99 2.85 1.27

Table 11: Average F1-scores, standard deviation (SD) and standard error (SE) to
measure the overall performance variability during 5-fold cross-validation.

After an initial test run on all datasets and an inspection of the model performance

over a total of 100 epochs, we found that the scores did not significantly improve

during the later epochs.1 We therefore limited the maximum number of epochs to

50 in order to reduce training time. In the following evaluation tables, the presented

scores correspond to the average values computed over the five cross-validation folds.

Despite the potential randomness typical for neural models, we report all results with

two decimal places to convey the partly subtle differences in performance. Table 12

gives an overview on the best-performing neural models per training corpus.

German English

Model P R F Model P R F

Combined char dim 29 94.94 94.98 94.96 dropout 0.7 88.54 85.60 87.04

Wiki dropout 0.3 94.96 95.11 95.04 char dim 29 88.65 86.96 87.79

TB dropout 0.7 90.55 89.11 89.82 capdim 1 71.06 54.02 61.12

PlantBlog capdim 1 87.43 83.04 85.07 char dim 50 83.94 76.97 80.22

BotLit/S800 dropout 0.3 67.81 36.62 47.21 dropout 0.7 90.83 84.64 87.60

Table 12: Best-performing neural models per training corpus (Combined, Wiki, TB,
PlantBlog, BotLit/S800 ).

1One epoch represents the iteration over all input training examples, i.e. the sentences in the
training dataset [Carreras et al., 2003].
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For German, the models trained on the Wikipedia abstracts with a dropout rate of

0.3 and the combined dataset with a character embedding size of 29 achieve the best

results. Except for the BotLit corpus, which is small in size and contains historical

spelling variants of vernacular names, the evaluation showed F1-scores >89% for the

German TB and >85% for the PlantBlog corpus. Similarly, the English Wiki model

using a character embedding dimension of 29 outperformed the other datasets with

87.79% in F1-score, obtaining, however, generally lower F1-scores as compared to

the German dataset. The model trained on the S800 corpus [Pafilis et al., 2013]

using a dropout rate of 0.7 reached a competitive performance with an outstanding

precision of >90%, despite being much smaller in size. This is explainable due to

the predominant usage of Latin botanical names in this scientific text genre. We

hypothesize that the higher performance on the German datasets can be explained

due to generally more frequent occurrences of both vernacular and scientific entity

mentions (see Table 7 in Section 3.1.3), at least for the Wiki and the TB corpus.

4.2.1 Baseline

Since there are no multilingual NER systems focusing on the recognition of both

vernacular and scientific botanical entities that could be used as a baseline for model

comparison, we created a baseline system using the default training parameters

provided by Lample et al. [2016]. The default parameters include: no lowercasing of

input, a character embedding size of 25, a character LSTM hidden layer size of 25,

a bidirectional LSTM for characters, a token embedding dimension of 100, a token

LSTM hidden layer size of 100, a bidirectional LSTM for words, no pre-trained

embeddings, a conclusive CRF layer, a dropout rate of 0.5, the stochastic gradient

descent (SGD) optimization method, a learning rate of 0.01, and gradient clipping

[Lample et al., 2016]. For this baseline, we did not integrate any language-specific

pre-trained embeddings. Accordingly, all input embeddings were directly trained on

the input data with a token embedding dimension of 100. All digits in the input

data are represented as zeros to reduce training time (parameter zeros=True).

4.2.2 Adding Distributional Information with Word Embeddings

To enrich the input with distributional information [Mikolov et al., 2013], we inte-

grated the pre-trained FastText word embeddings with a dimension of 300 [Grave

et al., 2018]. These German and English word vectors are trained on Common Crawl

and Wikipedia and use a continuous bag of words (CBOW) model architecture, a

window size of 5, and character n-grams of length 5 [Grave et al., 2018].
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German English German English

P R F P R F P R F P R F

Combined dataset PlantBlog dataset

1st training round 1st training round

baseline 96.26 91.73 93.94 92.71 88.39 90.49 baseline 74.20 66.53 65.80 86.81 61.70 72.08

pre emb 95.33 95.44 95.38 93.92 90.94 92.40 pre emb 83.71 79.65 81.52 88.42 70.77 78.54

2nd training round 2nd training round

baseline 95.11 91.45 93.24 88.28 82.35 85.20 baseline 74.96 68.77 70.26 78.96 60.97 68.58

pre emb 94.88 94.96 94.92 88.60 84.61 86.55 pre emb 87.08 81.66 84.23 83.16 75.26 78.99

Table 13: Baseline model performance and improvements after adding pre-trained
embeddings for combined dataset (left) and PlantBlog dataset (right).

As visible in Table 13, integrating the pre-trained FastText embeddings [Grave et al.,

2018] with a token embedding dimension of 300 resulted in an overall performance

improvement as compared to the baseline models.2 Especially the models trained

on the smaller datasets improved notably after adding the pre-trained embeddings.

For instance, we can report an increase of +15.72% in F1-score3 for the German

PlantBlog corpus during the first training round and of +13.97% in F1-score dur-

ing the second round. We hypothesize that the systematic writing style of the

Wikipedia genre, which also constitutes most of the combined dataset, is the rea-

son for the marginal improvements regarding the models trained on the combined

datasets (+1.92% in F1-score for the combined English dataset in the first training

round and +1.35% in the second round). Training such in-domain character-level

and word-level representations directly on the input data as in the baseline systems

appears to model the distributional information for such large datasets fairly well.

4.2.3 Dropout Training

The integration of dropout training is a popular method to improve generalization

and prevent overfitting in deep learning with neural networks [Srivastava et al., 2014;

Cheng et al., 2017]. To put it briefly, dropout training implies “multiplying neural

net activations by random zero-one masks during training” [Cheng et al., 2017].

Thus, units and their connections are randomly dropped to reduce the tendency of

co-adaptation between the single units [Srivastava et al., 2014]. The dropout rate p

2A full overview on the model performance can be found in Appendix B, Table 31.
3Please note that the reported improvements in this thesis correspond to percentage points.
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represents the probability of the mask value being one [Cheng et al., 2017; Srivastava

et al., 2014]. Dropout training additionally ensures that both character-level and

token-level representations are used during learning and hence prevents the final

model from depending too much on one representation [Lample et al., 2016].

German English

P R F P R F

Combined pre emb + drop0.5 94.88 94.96 94.92 88.60 84.61 86.55

dataset pre emb + drop0.2 94.82 94.80 94.80 88.17 85.90 87.02

pre emb + drop0.3 94.88 94.89 94.88 88.58 84.51 86.49

pre emb + drop0.7 94.42 95.18 94.80 88.54 85.60 87.04

Wiki pre emb + drop0.5 94.75 95.17 94.96 88.12 86.61 87.35

pre emb + drop0.2 94.59 95.37 94.98 87.68 86.81 87.24

pre emb + drop0.3 94.96 95.11 95.04 88.32 85.43 86.84

pre emb + drop0.7 94.51 95.04 94.77 88.39 86.51 87.44

TB pre emb + drop0.5 89.77 89.56 89.65 63.64 55.26 58.20

pre emb + drop0.2 88.36 89.08 88.71 63.76 54.44 58.62

pre emb + drop0.3 89.57 89.14 89.34 66.60 54.73 60.00

pre emb + drop0.7 90.55 89.11 89.82 68.31 56.23 61.31

PlantBlog pre emb + drop0.5 87.08 81.66 84.23 83.16 75.26 78.99

pre emb + drop0.2 85.48 82.76 83.88 82.37 75.63 78.82

pre emb + drop0.3 85.93 83.36 84.53 81.82 74.87 78.17

pre emb + drop0.7 87.13 78.99 82.82 86.16 71.56 78.05

BotLit/S800 pre emb + drop0.5 60.09 21.01 28.19 89.59 84.61 86.99

pre emb + drop0.2 61.52 35.94 44.43 89.21 83.30 86.13

pre emb + drop0.3 67.81 36.62 47.21 90.14 82.98 86.39

pre emb + drop0.7 40.00 6.50 11.11 90.83 84.64 87.60

Table 14: Evaluation of dropout training with rates of 0.5 (default), 0.2, 0.3 and 0.7
for all datasets in the second training round.

To improve generalization performance, we experimented with lowered and aug-

mented dropout rates during training. Lample et al. [2016] suggest a dropout rate

p of 0.2 for English and 0.3 for German. In these experiments, all baselines and

pre emb models used a balanced rate (p = 0.5). We additionally explored the im-

pact of lowered and augmented rates of 0.2, 0.3 and 0.7 for both languages. As

visible in Table 14, using a lowered dropout rate of 0.3 in combination with pre-

trained embeddings resulted in improvements for the German Wiki, PlantBlog and

BotLit corpora. Contrary to the suggested rate for English by Lample et al. [2016],

the largest improvements can be observed when adopting a higher dropout rate of

0.7. In addition, we found that the language-specific adaptation of the dropout rate

can be beneficial in cross-corpus settings and improves model generalization across

different text genres (see Section 4.3 for a cross-corpus model evluation).

39



Chapter 4. Neural Models: Results and Evaluation

4.2.4 Character Embedding Dimension

As previously mentioned, the neural models do not only rely on token-level distribu-

tional information, but also on character-based representations learned directly from

the input data. These combined representations capture distributional sensitivity

(word embeddings) and orthographic sensitivity (character embeddings) [Lample

et al., 2016; Ling et al., 2015].

German English

P R F P R F

combined dataset pre emb + char dim25 94.88 94.96 94.92 88.60 84.61 86.55

pre emb + char dim29 94.94 94.98 94.96 88.32 85.19 86.73

pre emb + char dim50 94.58 95.28 94.93 87.76 85.18 86.44

Wiki pre emb + char dim25 94.75 95.17 94.96 88.12 86.61 87.35

pre emb + char dim29 94.60 95.31 94.95 88.65 86.96 87.79

pre emb + char dim50 94.65 95.32 94.98 88.08 86.34 87.19

TB pre emb + char dim25 89.77 89.56 89.65 63.64 55.26 58.20

pre emb + char dim29 90.04 89.31 89.65 66.47 53.42 59.18

pre emb + char dim50 89.75 89.75 89.75 63.03 54.61 58.31

PlantBlog pre emb + char dim25 87.08 81.66 84.23 83.16 75.26 78.99

pre emb + char dim29 87.57 80.85 83.96 84.90 73.43 78.71

pre emb + char dim50 87.51 81.09 84.04 83.94 76.97 80.22

BotLit/S800 pre emb + char dim25 60.09 21.01 28.19 89.59 84.61 86.99

pre emb + char dim29 71.08 29.48 41.01 90.43 83.93 87.04

pre emb + char dim50 55.00 14.96 22.44 89.04 83.43 86.10

Table 15: Evaluation of the character embedding dimension using an embedding size
of 25 (default), 29 and 50 for all datasets in the second training round.

The combination of both representations encourages the models to rely on all the

available morphological and orthographic evidence that a sequence of tokens is (or is

not) a named entity. Especially for morphologically rich languages such as German,

we expected these character-level representations to be advantageous. Modeling ex-

tensive plant names such as “Unserer-lieben-Frauen-Handschuh” (‘purple fox-glove’,

Digitalis purpurea) or “Schmetterlingsblütenartigen” (Fabales) could hence yield

more accurate representations. To explore the impact of the character embedding

dimension parameter, we trained two supplementary models for German and En-

glish using an augmented embedding size of 29 and 50 (default = 25). Contrary to

our expectations, the evaluation in Table 15 did not reveal a consistent tendency for

better performance when using either 29 or 50 as a character embedding dimension.

Except for the German PlantBlog model, the German models experienced marginal

improvements using a character embedding dimension of 29 (combined dataset) and
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50 (Wiki and TB dataset). The largest improvement are observable for the German

BotLit corpus with +12.82 in F1-score using an embedding size of 29. For En-

glish, we can observe minor improvements using an embedding size of 29 (combined

dataset, Wiki, TB and S800 dataset) and 50 (PlantBlog corpus).

4.2.5 Capitalization Feature Dimension

Capitalization is a valuable orthographic and shape-related feature widely used in

feature-engineered NER systems [Yadav and Bethard, 2018]. To explore the poten-

tially beneficial impact, we trained a supplementary model for German and English

and included an additional capitalization dimension layer during training.

German English

P R F P R F

combined dataset pre emb 94.88 94.96 94.92 88.60 84.61 86.55

pre emb + capdim 94.20 95.55 94.87 88.58 84.70 86.59

Wiki pre emb 94.75 95.17 94.96 88.12 86.61 87.35

pre emb + capdim 94.24 95.71 94.96 88.22 85.12 86.63

TB pre emb 89.77 89.56 89.65 63.64 55.26 58.20

pre emb + capdim 88.97 89.88 89.40 71.06 54.02 61.12

PlantBlog pre emb 87.08 81.66 84.23 83.16 75.26 78.99

pre emb + capdim 87.43 83.04 85.07 83.04 74.42 78.44

BotLit/S800 pre emb 60.09 21.01 28.19 89.59 84.61 86.99

pre emb + capdim 66.59 27.82 38.24 89.84 83.87 86.71

Table 16: Evaluation of the capitalization feature dimension for all datasets in the
second training round.

For this parameter, an array of numerical values represents each input sentence:

The value 0 stands for a lowercase word, 1 for all uppercase characters, 2 for words

having only the first letter capitalized and 3 for words having any of the other

characters in the string capitalized. We expected this parameter to capture entity-

specific shape patterns and, thus, to contribute to more accurate tagging results. In

Latin species names, for instance, an uppercase genus name usually precedes a low-

ercase epithet. Similarly, German uppercase adjectives designate descriptive species

properties such as in “Kriechender Gänsefuß” (‘creeping tormentil’, Potentilla rep-

tans). The evaluation showed that including the capitalization feature dimension

can marginally improve model performance for small German datasets (PlantBlog

and BotLit dataset). In addition, we observed an improvement of +2.92% in F1-score

for the English TB corpus and marginal improvements for the combined dataset.
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For the other English datasets, no improvements related to the capitalization fea-

ture can be reported. We assume that the usually lower-cased English vernacular

plant names are the reason for this behavior. Regarding cross-corpus applications

and generalization performance on different text genres and unseen entities, the

capitalization feature dimension is highly promising (see Section 4.3).

4.2.6 Model Performance Per Entity Label

In the experiments, we adopted a fine-grained set of nine distinct hierarchical entity

labels. This includes two distinct classes for German and English vernacular names

on the taxonomic levels of species and plant families and seven taxonomic classes

for Latin names. Table 17 displays the performance per entity label of the German

and English models when using pre-trained embeddings on the combined datasets.

German English

No. of entities P R F No. of entities P R F

de species: 4202 90.20 92.26 91.22 en species: 1587 77.82 76.19 77.00

de fam: 1251 99.52 99.36 99.44 en fam: 196 95.92 94.95 95.43

lat species: 1580 96.58 98.58 97.57 lat species: 846 93.03 92.81 92.92

lat genus: 991 95.96 95.48 95.72 lat genus: 854 92.86 85.73 89.15

lat fam: 1067 99.72 100.00 99.86 lat fam: 483 98.14 99.16 98.65

lat subfam: 99 98.99 100.00 99.49 lat subfam: 41 97.56 76.92 86.02

lat class: 23 91.30 100.00 95.45 lat class: 5 80.00 66.67 72.73

lat order: 46 100.00 97.87 98.92 lat order: 35 97.14 77.27 86.08

lat phylum: 4 100.00 80.00 88.89 lat phylum: 5 80.00 100.00 88.89

total/average: 9263 96.91 95.95 96.28 total/average: 4052 90.27 85.52 87.43

Table 17: Model performance per entity label evaluated on the first fold of the com-
bined dataset for German (left) and English (right).

To answer research question 3 (“How well does the tagger perform with regard

to different classes of entities?”), we found that the labels comprising entities with

systematic suffix patterns such as -ceae for Latin plant families (lat fam), -oideae for

Latin subfamilies (lat subfam) or -gewächse, -blütler or -family for the vernacular

family names (de fam and en fam) are identified reliably in both languages. More

heterogeneous categories such as the scientific and vernacular taxonomic level of

species (lat species, de species, en species) are often mismatched. Moreover,

low-frequent entity labels (lat class, lat phylum) represent a challenge for the

neural tagger. The inclusion of additional data containing mentions from these

entity classes could be a possible way to augment the recall and to guarantee a

consistent performance per entity label. We hypothesize that the performance on
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the vernacular species level is higher for German due to the higher concentration

of entity occurrences in general (4,202 species mentions for German and 1,587 for

English). Presumably, the German introductory Wikipedia abstracts simply include

more species names on the vernacular level. For both languages, the performance

on the Latin family label is outstanding: We can report an F1-score of 99.86% for

the German combined dataset and an F1-score of 98.65% for English. The Latin

species label (lat species) achieved F1-scores of >90% for both languages. We

assume that the performance is lower for English due to the more heterogeneous

Latin species label, including abbreviations such as B. perennis for Bellis perennis,

a phenomenon which is virtually non-existent in the German data.

4.3 Cross-Dataset Evaluation

To explore the domain adaptation potential, we conducted a cross-dataset evalua-

tion. For this purpose, we tested the tagging performance of the models trained on

a training fold (80%) of the Wiki corpus on a test fold (20%) of the other datasets.4

German English

Model P R F Model P R F

TB

best-performing Wiki model dropout 0.3 82.40 81.83 82.12 capdim 1 68.07 77.14 72.32

best-performing TB model dropout 0.7 90.55 89.11 89.82 dropout 0.7 68.31 56.23 61.31

PlantBlog

best-performing Wiki model dropout 0.3 92.16 83.43 87.58 chardim 29 72.65 58.62 64.89

best-performing PlantBlog model capdim 1 87.43 83.04 85.07 char dim 50 83.94 76.97 80.22

BotLit/S800

best-performing Wiki model dropout 0.7 100.00 45.00 62.07 pre emb 87.80 80.90 84.21

best-performing BotLit/S800 model dropout 0.2 61.52 35.94 44.43 dropout 0.7 90.83 84.64 87.60

Table 18: Best-performing models in individual and cross-corpus evaluation.

The results in Table 19 show that low-effort models trained on large Wikipedia

datasets can achieve a satisfying performance on a variety of text genres ranging

from mountaineering reports (TB), blog articles (PlantBlog) to botanical literature

(BotLit/S800 ). As compared to the results from the individual dataset evaluation

4In addition, we analyzed the cross-corpus adaptation capacity of the models trained on the
smaller corpora (TB, PlantBlog and S800 ). Their performance is, however, not comparable to
the Wiki models. Thus, we did not include them in the cross-corpus evaluation.
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(see Table 18), the cross-corpus scores outperformed the single-corpus performance

in several cases for German. For the German PlantBlog corpus, we observed an

increase in F1-score of +2.51%. The performance on the BotLit corpus increased by

+17.64% in F1-score. To answer research question 4 (“Can neural models trained on

large, low-effort datasets such as Wikipedia be applied to robustly identify botanical

entities in datasets from lower-resourced domains?”), these insights emphasize the

potential of large, multilingual Wikipedia models and their application on lower-

resourced text genres and domains. For English, none of the cross-corpus Wiki

models outperformed the best-performing individual dataset models.

TB PlantBlog BotLit/S800

NER-tagging model P R F P R F P R F

Wiki pre emb 77.03 80.89 78.91 88.46 81.66 84.92 80.00 42.11 55.17

(German) chardim 29 80.38 81.84 81.11 93.75 80.36 86.54 100.00 45.00 62.07

chardim 50 73.73 81.49 77.42 82.35 82.84 82.60 61.54 42.11 50.00

dropout 0.2 74.56 83.45 78.76 87.97 82.74 85.28 80.00 42.11 55.17

dropout 0.3 82.40 81.83 82.12 92.16 83.43 87.58 80.00 42.11 55.17

dropout 0.7 85.56 76.53 80.79 95.00 78.70 86.08 100.00 45.00 62.07

capdim 1 76.68 81.40 78.97 90.26 81.76 85.80 80.00 42.11 55.17

Wiki pre emb 65.85 77.88 71.37 69.35 60.14 64.42 87.80 80.90 84.21

(English) chardim 29 69.64 73.58 71.56 72.65 58.62 64.89 76.34 83.53 79.78

chardim 50 64.00 76.19 69.57 70.16 60.00 64.68 79.57 85.06 82.22

dropout 0.2 64.66 71.43 67.87 65.29 56.03 60.31 77.53 81.18 79.31

dropout 0.3 68.52 70.48 69.48 60.99 60.56 60.78 80.95 77.27 79.07

dropout 0.7 61.83 79.41 69.53 63.24 61.43 62.32 76.67 81.18 78.86

capdim 1 68.07 77.14 72.32 64.52 56.34 60.15 84.71 81.82 83.24

Table 19: Evaluation of Wiki models on the other datasets (TB, PlantBlog,
BotLit/S800 in cross-corpus setting.

Lample et al. [2016] underline that dropout training is crucial for good generalization

performance. Furthermore, dropout training reduces overfitting, which our system

is more prone to because of the systematic annotations. Adapting the dropout

rate resulted in robust performance across different text genres for German. The

best-performing German Wiki models used a dropout rate of 0.3 for the TB and

PlantBlog dataset and a dropout rate of 0.7 for the BotLit corpus. Similar to the

insights gained from the single-dataset evaluation, using an augmented dropout rate

of 0.7 for English demonstrated a beneficial impact on the performance, especially

regarding recall: The Wiki models achieve the highest recall (R) for the English TB

corpus (R = 79.41) and for the PlantBlog corpus (R = 61.43) (see Table 19).
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4.4 Tagging Fungi: Evaluation on Unseen Entities

To measure the generalization ability of the Wiki models on unseen entities and

unseen entity contexts, we conducted an additional cross-corpus experiment. We

created two supplementary test sets for German and English from Wikipedia fungi

articles by automatically retrieving the introductory abstracts of the articles from

the main categories, “Mushroom types” (for English) and “Pilze” (‘fungi’ for Ger-

man) using the Wikipedia API. Subsequently, we tested the Wiki model performance

on these new datasets containing unseen entities, that is, entities that did not occur

in the training data set.

German English Total / Average

domain mycology (fungi)

number of tokens 2,986 2,960 5,946

number of types 898 847 1,745

mean token length 5.78 4.69 5.23

number of sentences 163 144 307

mean sentence length 18.31 20.38 19.34

Table 20: Corpus details for supplementary fungi test set.

In addition, we retrieved the abstracts from the subcategories “Agaricales”, which

correspond to the well-known gilled mushrooms including the ubiquitous common

mushroom or the poisonous fly agaric and the “Boletales” category including de-

licious boletes like penny buns, birch boletes or the dotted stem boletes [Brandon

et al., 2007; Wikipedia, 2018a,b]. Since these two orders contain some of the most

popular and wide-spread types of edible and poisonous mushrooms, our intuition

was that the introductory Wikipedia abstracts do not only comprise scientific, but

also vernacular fungal names. Table 20 depicts the fungus corpus details for German

and English. In terms of size, we collected approximately 3,000 tokens per language,

which is similar to the size of the PlantBlog test set. It should be mentioned, that

besides vernacular and scientific fungal names, this test sets also include a few plant

names. This contextual co-occurence is mainly due to symbiotic or parasitic rela-

tionships between fungi and trees (see Example 1 below) or phylogenetically related

lichens (2). In the fungi test set, we annotated both types of entities on the species

level, without any additional distinction between different kingdoms or symbiotic

relationships (e.g. plants or lichens versus fungi).
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1. It was once thought to be mycorrrhizal with Pinus sylvestris.

2. Basidiolichens are lichenized members of the Basidiomycota, a much smaller

group of lichens than the far more common ascolichens in the Ascomycota.

In total, the English fungi test set comprises 182 vernacular species names, 122 Latin

species, 44 generic names, 4 subfamilies, 31 families, 24 orders and 4 classes. The

German set includes 229 vernacular species and 62 family names, 192 Latin species,

32 genera, 1 subfamily, 33 families, 6 orders and 1 class name. Table 21 reports the

results from applying the Wiki models on the language-specific fungi test sets.

Fungi testset (German) Fungi testset (English)

Wiki-models A P R F A P R F

pre emb 87.11 83.54 36.40 50.70 94.07 89.42 62.82 73.80

chardim 29 87.31 82.79 37.48 51.60 93.32 87.21 57.99 69.66

chardim 50 87.41 84.65 37.57 52.04 93.97 89.01 62.31 73.30

dropout 0.2 88.18 85.28 41.85 56.15 93.46 86.92 58.85 70.19

dropout 0.3 85.70 80.65 27.73 41.27 93.15 88.16 55.67 68.25

dropout 0.7 86.27 84.50 30.84 45.19 93.76 87.23 61.76 72.31

capdim 1 88.31 86.89 42.49 57.07 94.17 89.78 63.24 74.21

Table 21: A (accuracy), P (precision), R (recall) and F (F1-score) for Wiki model
performance on unseen entities (fungi test set).

Interestingly, the capdim models using an additional layer for the capitalization fea-

ture dimension, were particularly successful in this cross-corpus setting dealing with

unseen mycological entities. The results for the German fungi test set achieved an

F1-score of maximally 57.07%, while the English Wiki models reached a perfor-

mance of 74.21%. Contrary to the beneficial effect of dropout training mentioned in

Section 4.3, the cap dim models using a balanced dropout rate of 0.5 were the most

promising parameter combination in this setting. A brief inspection of the tagged

output produced by the neural tagger showed that the main source of error is not

only concentrated on the level of vernacular names, but also affects scientific genus

and species names. As visible in Example 1, the German fungus “Sumpf-Saftling”

(‘waxcap mushroom’) has been correctly identified as a vernacular species name.

1. Der O Sumpf-Saftling B-de species ( O Hygrocybe O helobia O [...]

2. Gyroporus B-lat species castaneus I-lat species , O or O commonly O

the O chestnut B-en species bolete O , O is O a O small O , O

white O - O pored O relation O of O the O Boletus O mushrooms O
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Although Latin fungal species names follow the systematic pattern of usually two

tokens with typical, case-congruent suffixes, the name “Hygrocybe helobia” has

not been recognized by the neural tagger. We assume that the presence of the

form “-cybe”, which is typical for mycological names describing a special cap shape

[Cundall, 1998], is the reason for this behavior. Example 2 shows that typical and

obviously congruent Latin species suffixes (-us, -us) led to the correct identification

of “Gyroporus castaneus”. The name “chestnut bolete”, conversely, has only been

partially recognized by the system. Presumably, the subsequence “chestnut”, which

also refers to multiple deciduous trees from the genus Castanea, is an interfering

factor in this case. Finally, the genus name “Boletus” in Example 2 is missed by

the tagger despite the presence of the typical Latin suffix -us.

To sum up, we observed a particularly beneficial impact of the capitalization feature

dimension when tagging unseen entities in the related sub-domain of mycology.

Again, the potential of large Wiki models for the application on new, potentially

lower-resourced genres and sub-domains is worth highlighting.

4.5 Comparison to In-Domain Systems

Since previous plant name recognition systems focus, to the best of our knowledge,

on the identification of Latin taxonomic entities in text, we compared the perfor-

mance of the neural models to our own baseline (Sections 4.2.1 and 4.2.2). In terms

of direct comparability, this approach guarantees informative and fair values on an

identical set of entity types. Nevertheless, we include a brief overview and evaluation

of related in-domain systems in Table 22, regardless of whether they are rule-based

[Koning et al., 2005; Sautter et al., 2006], dictionary-based [Gerner et al., 2010;

Pafilis et al., 2013; Leary, 2014], or based on machine learning techniques [Akella

et al., 2012; Habibi et al., 2017]. All the listed approaches have a strong focus on

automatically identifying scientific plant names in text corpora. Except for the Tax-

onFinder developed by Leary [2014], the tools do not distinguish between multiple

hierarchical levels in their entity label set. Commonly, they only adopt a single la-

bel for “organism” [Akella et al., 2012], “species” [Gerner et al., 2010; Habibi et al.,

2017] or “taxon name” [Sautter et al., 2006]. Even if the recognition of vernacular

plant names is, at least to some extent, addressed as for example in the Species tag-

ger presented by Pafilis et al. [2013], the authors did not conduct an entity-specific

evaluation in their publication. Hence, the system’s performance regarding named

entities on a vernacular level cannot be sufficiently assessed and compared to our

approach. In addition, not all of these systems aim for the identification of entities
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on different taxonomic levels (species, genus, family, subfamily, etc.). The systems

introduced by Habibi et al. [2017] and Gerner et al. [2010], for instance, focus on

the identification of taxa on the species level and thus neglect the classification of

entities on other taxonomic levels. Especially when dealing with the automatic pop-

ulation and extension of hierarchical knowledge bases, this taxonomic information

is, in our opinion, highly important.

System Method Languages Entities (no. of entity labels) Test Corpus Authors Evaluation Results

P R F

Our System bi-LSTM-CRF en (Wiki model) scientific (7), vernacular (2) S800 Meraner (2019) 87.8 80.9 84.2

Our System bi-LSTM-CRF en (S800 model) scientific (7), vernacular (2) S800 Meraner (2019) 90.8 84.6 87.6

Biomed. NER LSTM-CRF en
scientific (1)

(focus on species level)
S800 Habibi et al. (2017) 80.8 87.6 83.6

NetiNeti probabilistic ML classifier en
scientific (1)

(all taxonomic levels)
ASB Akella et al. (2012) 98.9 70.5 82.3

gnparser
statistical parsing,

CFG
en

scientific

(parsing of complex entities,

incl. authorship)

1000 name-strings Mozzherin et al. (2017) 98.9 100 99.4

Species dictionary-based en
scientific (1)

all taxa, (partially) vernacular
S800 Pafilis et al. (2013) 83.9 72.6 77.8

Linneaus dictionary-based en
scientific (1)

(focus on species level)
S800 Gerner et al. (2010) 84.3 75.4 79.6

TaxonFinder dictionary-based en
scientific (8)

(all taxonomic levels)
ASB Leary et al. (2014) 97.5 54.3 69.7

TaxonGrab rule-based en, es, de, fr
scientific (1)

(all taxonomic levels)
C.1932 Koning et al. (2005) 96.0 94.0 95.0

FAT rule-based en
scientific (1)

(all taxonomic levels)
C.1932 Sautter et al. (2007) 92.7 87.8 95.0

Table 22: Comparison to in-domain botanical entity recognition systems.

It should be mentioned, that some of the systems also focus on the identification

of species names from other kingdoms (i.e. fungi, animals) [Habibi et al., 2017].

Regrettably, the authors did not present an individual performance evaluation per

sub-domain (botany, mycology or zoology). We compare our approach to three of

the listed systems, since the authors used the S800 test set [Pafilis et al., 2013] for

their evaluation. Habibi et al. [2017] for example report an F1-score of 83.6% for the

species label, which, unlike our model, also includes the recognition of other organ-

ism names. As visible in Table 22, our approach achieved an F1-score of 87.6% for

the model trained with a dropout rate of 0.7 on a subset of the S800 corpus includ-

ing only botanical abstracts. We achieved an F1-score of 84.2% in the cross-corpus

evaluation setting using the model trained on Wikipedia abstracts, pre-trained em-

beddings and a balanced dropout rate of 0.5. Our system also outperformed two

other systems that have been evaluated on the S800 test set: Pafilis et al. [2013]

report an F1-score of 77.8%, while Gerner et al. [2010] achieve a slightly higher

F1-score of 79.6%.
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In summary, the comparison to in-domain systems suggests that the neural mod-

els presented in this work achieve competitive performance in single-corpus (S800

model) and cross-corpus (Wiki model) settings. Concerning the level of granularity,

we want to stress that the adoption of fine-grained, hierarchical entity labels can be

beneficial for a variety of tasks such as automatic taxonomy learning and knowledge

base population. Our approach shows that an entity label set of nine distinct tax-

onomic classes can be robustly identified across manifold genres without sacrificing

the overall performance.

4.6 Error Analysis

For a better understanding of potential sources of errors and deviations from our

initial expectations, we conduct an error analysis in this section. We focus on the

following main critical components and their potential interference with the model

performance:

1. Preprocessing as a source of error

2. Shape and heterogeneity of botanical entities

3. Language-specific entity ambiguity

4.6.1 Source of Error I: Preprocessing

After the first experiment run and evaluation, we noticed that a decisive factor

leading to errors in the data and biased results can be localized upstream in the pre-

processing pipeline (see Section 3.2). For instance, the tokenization tools integrated

in NLTK [Loper and Bird, 2002] and spaCy [Honnibal and Montani, 2017] were

unable to deal with domain-specific abbreviations. The creation and application of

optimized, domain-specific tokenizers could hence result in a higher quality of the

preprocessing output. Current approaches in this field combine domain-adapted reg-

ular expressions and machine learning for the split-join classification task [Barrett

and Weber-Jahnke, 2011]. The adaptation and tailoring of such preprocessing tools

was, however, not the main scope of the current project. To avoid erroneous sentence

segmentation and truncated Latin plant names, which often contain such botanical

abbreviations, we applied a regular expression in order to re-merge sentences in the

IOB-annotated files (see Table 23).

49



Chapter 4. Neural Models: Results and Evaluation

regular expression
\n(var|convar|agg|ssp|sp|subsp|x|L|auct|comb|illeg|cv|emend|al|f|hort|nm|nom|ambig|
cons|dub|superfl|inval|nov|nud|rej|nec|nothosubsp|p|hyb|syn|synon)(\t.*?)\n\.\t.*?\n

replace pattern \n\1\.\2\n

Table 23: Find and replace pattern to re-merge sentences that have been split at
botanical abbreviations (list after Meades [2018]) during preprocessing.

The correction of these erroneously split sentences allowed us to automatically anno-

tate more complete and extensive plant names using our dictionary-based annotation

system (see Table 24). The example below shows that our dictionary-based system

was only able to annotate the extensive Latin infraspecies name “Diospyros kaki var.

sylvestris” in the second annotation round (right). Previously, the entity mention

has been split and truncated during tokenization due to the presence of the botanical

abbreviation “var.” standing for a species variety. While in the first version of the

Wiki dataset 7,659 entities have been annotated with the IOB tag I lat species

(inside of a Latin species name), we found 8,309 internal species names in the second

annotation round.

1st annotation round 2nd annotation round

A a DET O A a DET O

variety variety NOUN O variety variety NOUN O

is be VERB O is be VERB O

Diospyros diospyros PROPN B-lat species Diospyros diospyros PROPN B-lat species

kaki kaki NOUN I-lat species kaki kaki NOUN I-lat species

var var NOUN O var. var NOUN I-lat species

. . PUNCT O sylvestris sylvestris PROPN I-lat species

Makino makino PROPN O

sylvestris sylvestris PROPN O . . PUNCT O

Makino makino PROPN O

. . PUNCT O

Table 24: Initial sentence segmentation at botanical abbreviations (left) and cor-
rected version after second annotation round (right).

4.6.2 Source of Error II: Entity Shape and Heterogeneity

Especially for German, the increased variety in shape and length of the annotated

entities during the second training run resulted in lower evaluation scores on the

silver standard as compared to the first run (see Table 25). The final training
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material for both languages contained more variegated surface patterns. These

comprise hyphenated compounds and plant names of variable length, ranging from

unigrams such as “sage” (Salvia officinalis) to n-grams as in “Jack-go-to-bed-at-

noon” (Tragopodon pratensis) for the entity label en species. Moreover, the Latin

species label (lat species) presents a larger variability with regard to the number

of tokens involved: We may encounter bi-grams such as “Nigella sativa” and four-

grams referring to infraspecies names such as “Lactuca sativa var. crispa”. As a

result, better annotations led to more heterogeneous entity candidates per label and,

presumably, to some sort of “confusion” of the LSTM-CRF tagger. Nonetheless, the

systematic, semi-automatic corrections based on part-of-speech (POS) patterns or

sentence re-merging had a positive impact on the performance as measured by the

gold standard, - even if this led to more heterogeneous entities in the first place. To

demonstrate this, we evaluated the neural model performance during both stages

on the automatically annotated silver standard and on the manually corrected gold

standard (see Table 25). This shows the quality of a system trained on silver-labeled

data when evaluated on gold annotations.

German English

silver standard gold standard silver standard gold standard

A P R F1 A P R F1 A P R F1 A P R F1

1st round

baseline 98.58 96.52 91.32 93.85 94.13 82.83 79.49 81.12 98.01 87.56 78.31 82.68 97.16 89.99 75.54 82.13

pre emb 98.92 95.75 94.70 95.22 94.53 84.03 80.86 82.42 98.42 88.94 83.70 86.24 97.27 88.36 78.50 83.14

2nd round

baseline 98.30 95.38 90.96 93.12 97.61 96.23 88.72 92.32 98.07 88.28 82.35 85.20 98.05 89.91 87.22 88.55

pre emb 98.81 94.41 95.68 95.04 98.15 96.68 91.79 94.17 98.26 88.6 84.61 86.55 98.17 90.20 88.46 89.32

Table 25: Performance of combined data models on automatically annotated silver
standard and manually corrected gold standard over two training rounds.

Table 25 shows that, at a first glance, the performance of the German models on

the silver standard decreased from the first to the second evaluation round. For the

German combined dataset the F1-scores fell by -0.73% for the baseline model and

by -0.18 for the pre emb model. Yet, if looking at the associated performance on the

gold standard on the right side, it is visible, that the performance gap between silver

standard and gold standard significantly decreased in the second training round.

The predictions made by the neural tagger are thus closer to the ground truth,

even though the silver standard test sets revealed minor performance decreases. As

previously mentioned, we assume that this decrease is due to more heterogeneous

German species entities ranging from unigrams (1 single token constituting an entity)

to multiword names (entities spanning over multiple tokens).
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For English, the performance on the gold standard even outperforms the silver stan-

dard scores after the second training round (+3.35% in F1-score for the English

baseline and +2.77% for the pre emb model). When considering the performance

on the English gold standard as opposed to the silver standard during the first train-

ing round, we only observed a marginal decrease of -0.55% for the baseline and of

-3.10% for the pre emb model. This contrasts with the performance gap between

silver standard and gold standard observable during the first training round for the

German data (-12.73% for the baseline and -12.80% for the pre emb model).

On the whole, we obtain a model performance of F1-scores >94% on both silver

standard and gold standard for the combined German model in the second evaluation

round. For English, we achieve >89% F1-score performance on the manually labeled

gold standard in the second evaluation round.

4.6.3 Source of Error III: Language-Specific Entity Ambiguity

As previously mentioned, language-specific entity ambiguity represents a consid-

erable challenge for the dictionary-based annotation system. Thus, we applied

semi-automatic corrections in the second annotation round to obtain more correctly

labeled training examples. For instance, we semi-automatically corrected the Ger-

man cases “Sonnenwende” (1. ‘solstice’, 2. ‘European turn-sole’ (Heliotropium

europaeum)) using regular expressions or context-dependent individual expert de-

cisions. Other corrected ambiguous cases were the German plant names “Winde”

(1. ‘winds’, 2. ‘bindweed’ (Convulvulus)), “Buchs” (1. ‘of the book’ (genitive),

2. ‘Buchs’ (location in Switzerland), 3. ‘boxwood’ (Buxus sempervirens)), “Edel-

weiss” or “Edelweiß” (1. name for guest houses in German-speaking alpine re-

gions, 2. Alpine edelweiss (Leontopodium nivale)). Other interesting cases trigger-

ing language-specific and context-dependent ambiguity are the German compounds

“Berglein” (literally ‘small mountain’, Thesium bavarum) and “Zwerglein” (literally

‘little gnomes’, Radiola linoides). Both vernacular names contain the diminutive

suffix -lein (‘small’). In this case, however, this suffix actually refers to the related

genus Linum called “Lein” in German (‘flax’).

For English, we corrected ambiguous color names that, depending on the context,

might also refer to plants: “rose” (1. ‘rose color’, 2. ‘species of the genus Rosa’),

“orange” (1. ‘orange color’, 2. ‘the species Citrus x sinensis ’), “mauve” (1. ‘mauve

color’, 2. ‘species of the genus Malva’). The same applies to ambiguous Latin

genus names that frequently coincide with female first names or toponyms: “Vic-

toria” (1. first name, 2. world-wide distributed toponym, 3. plant genus from
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the Nymphaeaceae family), “Rosa” (1. female first name, 2. plant genus from the

Rosaceae family). An inspection of the tagged output revealed the color “rose”

has been correctly labeled as outside (O) after the second training round. We do,

however, find one false positive instance referring to “Rose” as a proper name.5

4.7 Cross-Lingual Comparison

The shape and quality of language-specific vernacular plant names is highly depen-

dent on ethno-cultural factors and the language-community’s individual relation-

ship with certain wild, medical or domesticated plants. Vernacular names for exotic

species are often loan words or translations from the native language(s) of those

countries where the plant originally grows and, hence, a single designation is mainly

consistent across multiple languages (see Examples 1 and 2 in Table 26).6

LAT EN DE FR ES IT

1. Ravenala madagascariensis traveller’s tree Baum der Reisenden arbre du voyageur àrbol del viajero albero del viaggiatore

2.
Citrus medica

var. sarcodactylis
Buddha’s hand Buddhas-Hand-Zitrone main de Bouddha mano de buda mano di Buddha

3. Taraxacum officinale

dandelion

blowball

faceclock

tell-time

bitterwort

clockflower

swine’s snout

Irish daisy

Löwenzahn

Butterblume

Pusteblume

Kettenblume

Kuhblume

Maiblume

Pfaffenöhrlein

Pferdeblume

dent-de-lion

pissenlit

cramaillots

fausse chicorée

liondent

salade de taupe

laitue des chiens

dent de chien

diente(s) de león

panaderos

ásteres

achicoria amarga

meacamas

amargòn

radicheta

botón de oro

tarassaco

dente di leone

dente di cane

soffione

pisciacane

ingrassaporci

cicoria asinina

grugno di porco

4. Rumex alpinus

alpine dock

munk’s rhubarb

mountain-rhubarb

Alpenampfer

Scheißplätschen

Butterplätschen

Sauplotschen

Bergrhabarber

Blacken (CH)

oseille des Alpes

patience des Alpes

rapponti

rhubarbe des moines

rumex des Aples

romaza alpina

vinagretas

vinagreras

rabarbaro alpino

romice alpino

erba pazienza

acetosa

rubice alpino

lacasso

Table 26: Cross-lingual comparison of selected exotic and autochthonous vernacular
species names for English, German, French, Spanish and Italian.

Conversely, autochthonous plants with a long tradition as either medical, shamanic,

or food plants are given manifold creative names, usually reflecting the specific scope

of application, active substances, habitat, or therapeutical effect (see Examples 3

and 4). The German “Warzenkraut” (‘nipplewort’) reflects the beneficial effect of

Chelidonium majus7 for the successful treatment of warts [Achmüller, 2016]. Ex-

5Sentence context: Rose considers his name and nature uncertain [...]. (Wiki corpus)
6Examples: Pfeiffer [1898]; Achmüller [2016]; GBIF [2018]; Roskov et al. [2018]; Wikipedia [2018c].
7In some dialects, this vernacular name may also refer to species of the genus Euphorbium.

53



Chapter 4. Neural Models: Results and Evaluation

ample 3 shows that vernacular names may also be subject of linguistic variation

and phonetic adaptation processes for loan words: The English common name for

Taraxacum officinale “dandelion” constitutes a contraction of the French expression

“dent-de-lion” (‘lion’s tooth’) [Cresswell, 2010]. Other names for this species such

as “tell-time” refer to its folk usage of telling time:

“The dandelion is called the rustic oracle;

its flowers always open about 5 A.M. and shut at 8 P.M.,

serving the shepherd for a clock.” [Chamberlain, 1896]

What is more, vernacular expressions such as “blowball”, the German “Pusteblume”

or the Italian “soffione” refer to the custom of blowing the mature seeds from a dan-

delion’s globe. Interestingly, the Italian form “dente di leone” (‘lion’s tooth’) has

a related variant, namely “dente di cane” (‘dog’s tooth’). The same is true for

the French expression “dent de chien” (‘dog’s tooth’), in German, on the other

hand, no equivalent expression can be found for Taraxacum. The interesting case of

Rumex alpinus commonly referred to as “Scheißplätschen” (‘shit leaves’) or “But-

terplätschen” (‘butter leaves’) in different German dialects from Southern Germany,

Austria, Switzerland and South Tyrol conveys two distinct aspects of information:

According to Achmüller [2016], the expression “Scheißplätschen” is related to the

typical habitat of the plant: Alpine meadows covered in cowpats. The second ex-

pression “Butterplätschen” is linked to the fact that farmers in Alpine regions used

to wrap up fresh butter in the leaves to extend its storage life [Achmüller, 2016].

But how do such linguistic factors such as the level of structural complexity, i.e.

hyphenated compounds or names spanning over multiple tokens, influence the per-

formance of the LSTM-CRF models on the test data for German and English? For

both languages, multiword expressions (MWE) combining an adjective describing

the species and a subsequent noun referring to the plant genus occur frequently (see

Examples 1 and 2 in Table 27). With regards to the phenomenon of compounding,

English names are split at hyphens, e.g. “lime prickly-ash” (Zanthoxylum fagara) (see

Example 3), whereas German compounds are represented as single tokens such as

“Mücken-Händelwurz” (Gymnadenia conopsea) in Example 4. An inspection shows

that, in most cases, such instances are predicted reliably by the LSTM-CRF-tagger,

even if the silver standard annotations are missing or incomplete (see Examples 1,

3 and 4).

With regard to research question 2 (“How do linguistic phenomena such as com-

pounding influence the performance of the neural NER models?”), we can say that

even though linguistic phenomena such as compounding and hyphenated multiword
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Structure Token Lemma POS IOB (silver) IOB (predicted)

1. MWE Madagascan madagascan ADJ O B-en species

(English) bamboo bamboo NOUN B-en species I-en species

2. MWE Fünfblättriger zweifelhaft NN B-de species B-de species

(German) Wilder wild ADJA I-de species I-de species

Wein Wein NN I-de species I-de species

3. hyphenated lime lime NOUN B-en species B-en species

compound prickly prickly AJD I-en species I-en species

(English) - - PUNCT O I-en species

ash ash NOUN O I-en species

4.

hyphenated

compound

(German)

Mücken-Händelwurz <unk> NN O B-de species

Table 27: Cross-lingual tagging comparison of structurally complex vernacular enti-
ties (compounds, multiword expressions) for German and English.

expressions represent a major challenge for domain-specific named entity recogni-

tion (NER), robust performance is achievable using neural, language-specific NER

models trained on high-quality silver labels.

4.8 Summary and Discussion

Concerning research question 1 (“How well does the state-of-the-art bidirectional

LSTM-CRF architecture for named entity recognition perform on domain-specific

scientific and non-scientific text genres?”), the model evaluation presented in this

chapter showed that both scientific and vernacular plant names can be identified

and hierarchically classified across multiple text genres and languages. Especially

for smaller datasets such as TB, PlantBlog and BotLit/S800, we observed consid-

erable improvements after integrating the pre-trained FastText word embeddings

with an embedding size of 300 [Grave et al., 2018]. Due to time constraints, we

did not focus on the comparison of different types of embeddings. Presumably, the

application of domain-specific (i.e. trained on PubMed abstracts for English [Habibi

et al., 2017]), context-sensitive embeddings [Akbik et al., 2018], or deep contextu-

alized word representations [Peters et al., 2018] could yield more fine-grained and
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accurate word representations for the detection and classification of named entities

in this specific domain. To avoid extensive semi-automatic post-corrections of the

data resources, the development of flexible domain-adaptable preprocessing tools

including tokenizers and part-of-speech-taggers could be profitable.

Contrary to our expectations, an augmented character embedding dimension re-

sulted in only marginal improvements. Regarding the performance per entity label,

we observed F1-scores of >98% (English) and of >99% (German) for the entity label

B-lat fam having the systematic suffix -ceae. Including the capitalization feature

dimension as an additional layer during training proved to be particularly benefi-

cial in cross-corpus settings dealing with unseen entities from related domains such

as mycology (Section 4.4). Despite minor decreases in performance on the silver-

labeled data in the second training round, we observed F1-scores of >94% for the

German combined dataset on the gold standard test set. For the English combined

dataset, we can report a maximum performance of 89% F1-score on the gold stan-

dard data. Lastly, we want to highlight the potential of low-effort neural models

trained on Wikipedia articles for processing lower-resourced text genres such as his-

torical botanical literature and new domains as demonstrated in the cross-corpus

evaluation setting (Sections 4.3 and 4.4). Our error analysis and cross-lingual en-

tity comparison outlined potential pitfalls due to the versatile shapes and structural

patterns of vernacular plant names, which represent a major challenge when tagging

plants in multilingual texts.
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5 Linking Plants: Botanical Entity

Linking and Visualization

The final step in our approach involves the disambiguation of the candidate en-

tities proposed by the best-performing German or English tagging model and the

subsequent linking to an entry in a knowledge base. We used the Catalogue of Life

(CoL) [Roskov et al., 2018] as a reference database to link the proposed scientific and

vernacular candidates to a unique identifier. This international resource provides

a public webservice to retrieve any catalogued organism name from the database

and offers JSON and XML output formats to return the results. Despite being the

most comprehensive global database for international species from different king-

doms such as plants, fungi or animals, it is not yet complete. As a matter of fact,

the CoL partially lacks, especially for German, historical and current vernacular

names for several species. To overcome this obstacle, we used a language-specific

lookup table that we created by combining several structured resources retrieved

during the data collection phase.

In the following, we discuss the outcomes and insights gained from the final entity

linking stage. We analyze the overall coverage of the botanical entity linking when

using an international reference knowledge base for disambiguation. In particular,

we aim to assess whether or not the majority of the entity candidates can be directly

linked to an entry in the database. If direct linking fails, can the integration of a

customized lookup table help to overcome this hurdle?

5.1 Querying Botanical Reference Databases

Querying the Catalogue of Life (CoL) webservice for botanical entities returns a

wide variety of valuable taxonomic information. For this project, we chose the

JSON output format and retrieved the entity’s database ID, the taxonomic rank

(species, genus, order, class, etc.) of the queried species, the official name status

according to the CoL (accepted name, synonym or common name), a URL to the
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corresponding database page, and a currently accepted scientific name. The latter is

the key information for disambiguating synonyms, outdated variants or vernacular

names. To illustrate this, querying the outdated, synonymous name for the lemon

verbena, “Aloysia triphylla”, returns the name status “synonym” and the associated,

currently accepted name variant, namely Aloysia citriodora:

Query:

http://webservice.catalogueoflife.org/col/webservice?name=Aloysia+triphylla&format=json

Result:

Figure 5: Catalogue of Life query result in JSON-format for Aloysia triphylla.

While candidates in the Linnaean binomial format (genus name + species epithet)

can be robustly retrieved and linked to the botanical reference database, finding

and disambiguating alternative name forms such as outdated synonyms, abbrevia-

tions, vernacular names, or names following other nomenclatures, holds a variety

of challenges. As visualized in Figure 5, we addressed this issue by automatically

checking the specific name status of each entity candidate. This allowed us not only

to automatically detect alternative name forms, but also to disambiguate and link

such cases to a currently accepted scientific name.

With regard to vernacular name entries, the CoL database is, however, only par-

tially complete and reliable, especially when it comes to the retrieval of non-English

common names. For this reason, we reused parts of the tabular data provided by

several institutions or private experts for the initial creation of the gazetteers. In

so doing, we were able to build a customized lookup table containing vernacular

names and their associated scientific equivalent(s) (see Table 28). In terms of size,

the German lookup table comprises 38,831, the English table 112,406 entries. A ver-
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nacular name might be linked to multiple scientific names, which is explainable due

to multiple factors: a vernacular name might refer to different taxa, e.g. “hen-and-

chicks” points to species from Jovibarba or Sempervivum. Alternatively, differing

degrees of structural complexity for the associated Latin names can lead to multi-

ple entries per vernacular name. This involves infraspecies names such as varieties

(var.) or subspecies (ssp.), authorship information including a botanist’s name or

alternative name forms. For example, the entry for the German name “Zucchini”

(‘green squash, zucchini’) points to the main species name Cucurbita pepo and to

the infraspecies name Cucurbita pepo subsp. pepo. To avoid querying extensive sci-

entific names including authorship information in the reference database, we chose

the binomial species name.

Vernacular Name Latin Name(s)

Aargauer Gold-Hahnenfuß Ranunculus argoviensis

Abelie Abelia chinensis

Abelie Abelia x grandiflora

Abendländischer Lebensbaum Thuja occidentalis

Abendländischer Lebensbaum Thuja occidentalis ’Smaragd’

abessinischer Kohl Brassica carinata

abessinischer Meerkohl Crambe hispanica

abessinischer Meerkohl Crambe hispanica subsp. abyssinica

Abgebiss-Pippau Crepis praemorsa

Abgebissener Pippau Crepis praemorsa

Abgebissener Pippau Crepis praemorsa (L.) Tausch

Abgebissener Pippau Crepis praemorsa (L.) Walther

Akanthusgewächse Acanthaceae

Table 28: Lookup table for vernacular and associated scientific names.

5.2 Entity Linking Performance

To assess the overall entity linking coverage, we used the four annotated corpora and

measured how many entities can be linked directly and how many require additional

lookups before being linked. Table 29 shows that the task of linking domain-specific

entity candidates to a unique database entry is often hindered by missing database

entries. This is particularly the case for vernacular named entities. Our evaluation

on the four language-specific datasets shows that the integration of a lookup table for

mapping vernacular names to an associated Latin equivalent, is especially beneficial

for the German data.
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The linking coverage increases by approximately +8% (for Wiki and TB dataset) to

+16% (for the PlantBlog dataset) for German, whereas it only increases by +0.8%

(Wiki dataset) to maximally +7% (PlantBlog dataset) for the English corpora.

Wiki TB PlantBlog BotLit

German English German English German English German English

total no. of sentences 13,882 15,280 2,289 153 720 876 42 960

total entity candidates 42,490 19,457 3,268 398 843 685 84 339

linked entities

(direct)

8,568

(20.16%)

8,387

(43.11%)

613

(18.76%)

268

(67.33%)

267

(31.67%)

227

(33.13%)

35

(41.67%)

86

(25.37%)

linked entities

(lookup table)

11,773

(27.71%)

8,540

(43.89%)

859

(26.29%)

274

(68.84%)

390

(46.26%)

246

(35.91%)

43

(51.19%)

91

(26.84%)

linked entities

(lookup table+lower-casing)

12,031

(28.31%)

8,540

(43.89%)

862

(26.38%)

280

(70.35%)

393

(46.62%)

275

(40.15%)

43

(51.19%)

93

(27.43%)

Table 29: Entity linking performance on the four datasets.

Regarding research question 5 (“Can entity linking be applied for the semantic

disambiguation of both scientific and vernacular plant names?”), these outcomes

suggest that the linking performance is not yet satisfying, especially on the level of

vernacular names for non-international languages such as German. The integration

of comprehensive lookup tables can be an acceptable workaround for the time being.

In the case of multiple database instances returned by the API request, we chose

the response’s first instance which corresponds, at least for scientific names, to the

most relevant or the most widely accepted name variant [Roskov et al., 2018]. For

example, the API call for the black caraway (name=Nigella+sativa) returns three

alternative instances from the CoL database: 1. Nigella sativa, 2. Nigella sativa

var. hispidula, 3. Nigella sativa var. brachyloba. Nevertheless, we encountered false

positive linking results, where the first returned instance did not correspond to the

entity we were looking for.

Frequently, the returned instances were fuzzy matches, which actually referred to

a fungal or viral disease that often occurs on this exact plant (see Examples 1, 2

in Table 30). This behavior of the CoL webservice is unexpected, especially be-

cause we did not use any wildcards in the query expression to additionally retrieve

more extensive matches. Moreover, semantically vague vernacular names such as

“vine” (referring to different species of climbing plants) are often linked to untypical

scientific names (3). In this example, we would rather expect a more prototypi-

cal climbing plant, e.g. the grapevine (Vitis vinifera) instead of Adlumia fungosa,
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Query Gold disambiguation Linking result (CoL webservice)

1. cucumber
Cucumis sativus

(‘cucumber’)
Aureusvirus: Cucumber leaf spot virus

2. Oryza sativa
Oryza sativa

(‘Asian rice’)
Endornavirus: Oryza sativa endornavirus

3. vine
Vitis vinifera

(‘grapevine’)
Adlumia fungosa

Table 30: False positive entity linking examples for cucumber, Asian rice and vine.

which is commonly known as Allegheny vine.1 In addition, we found that linking

abbreviated forms of Latin names resulted in some difficulties. Since the full plant

name might not always co-occur within the same sentence, it is not always possible

to disambiguate the abbreviated form before querying the database. As a result,

querying the abbreviated form “L. japonicus” referring to the wild legume Lotus

japonicus using the query expression name=L.+japonicus returns an empty JSON-

object. The CoL webservice does only allow the use of wildcards at the very end of

a query expression and not at the inside of the query [Roskov et al., 2018], which

could have been a possible workaround to find database entries for these abbreviated

names. Thus, these abbreviated forms should be treated with caution. We would

like to emphasize that the disambiguation of such abbreviated forms without contex-

tual information on the document-level, is, in such cases, not always possible. The

abbreviated name “N. aquatica”, for instance, can refer to the water tupelo Nyssa

aquatica or to the North American lake cress Neobeckia aquatica. Pafilis et al. [2013]

successfully address this issue in their dictionary-based named entity recognition ap-

proach by checking if the corresponding unambiguous names appear within the same

document. Nonetheless, they do not refer to this issue with regard to entity linking

or in the case of missing contextual information on the sentence-level.

1We reported this unexpected behavior to the technical support team of the Catalogue of Life
and have been notified that the sorting order of the results has been adapted to retrieve exact
matches of Latin names. Regarding the vernacular names in the database, for the time being,
no essential fixes can be done. (Personal correspondence with Wilfred Gerritsen from the
Catalogue of Life technical support team, 20th of February 2019.)
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5.3 Web-Interface: End-to-End Named Entity

Recognition and Linking

As a final step, we integrated the end-to-end pipeline including linguistic preprocess-

ing, named entity recognition (NER) and entity linking (EL) into a web-interface.2

We used Bootstrap for the implementation of the interface and Flask [Grinberg,

2014] to set up the web-application. Our main goal was to provide a simple inter-

face that enables the user to input a raw text snippet in either German or English.

After successful processing and tagging of the text, a JSON-object containing all the

identified entity candidates is displayed and can be downloaded, if desired. If pos-

sible, all entity candidates proposed by the neural tagger are disambiguated using

the customized lookup table for vernacular names and the Catalogue of Life (CoL)

database for entity linking. The final JSON-file contains all the available taxonomic

information associated with each unique entity.

For the detection, disambiguation, and interlinking of the candidate entities, we

applied an end-to-end approach that can be sketched as follows:

1 Tokenization of input text

2 Re-merging of sentences split at botanical abbreviations

3 Tagging of tokenized sentences using an adapted version of the script

tagger.py [Lample et al., 2016] and the best-performing models

for German and English

4 Collection of positional information (sentence IDs and indices) for

the candidate entities proposed by the LSTM-CRF tagger

5 Run API queries for unique candidates (script entity linker.py)

6 Run lookups for vernacular names if the returned API response is

empty, and, if the lookup is successful, re-run the API query for

the disambiguated name

7 Store the gathered information for each entity in a JSON-object

2Appendix D gives an overview on the scripts included in the web-interface processing pipeline
for this end-to-end named entity recognition and linking approach. A publicly accessible de-
velopment version runs on https://imeran.pythonanywhere.com/.
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First, we prompt the user the choose the input language. The text snippet entered

by the user is then segmented into sentences and tokenized (step 1 and 2 ) and

tagged in the background (step 3 ) using the language-specific tokenizers provided

by the NLTK [Loper and Bird, 2002] or spaCy [Honnibal and Montani, 2017] li-

braries. During tokenization, we additionally check for the presence of botanical

abbreviations such as var. or ssp. and, if necessary, re-merge those sentences that

have been split by mistake (step 2 ). This interim step ensures that extensive in-

fraspecies names such as “Lactuca sativa var. crispa” are not split and thus missed

by the neural tagger. The adapted tagging script tagger.py [Lample et al., 2016]

uses the best-performing language-specific Wiki model3 to tag the tokenized text

and produces annotations in IOB format as an output. In step 4 , we iterate over

each proposed entity candidate and collect positional information, such as the sen-

tence ID and the index of the entity within a sentence. Finally, we run the API

query for the unique entities using the CoL webservice [Roskov et al., 2018] in step

5 . If the API response is empty, we check the language-specific lookup table and,

if possible, disambiguate the concerned names using a Latin name in order to re-

run the query. Especially for German vernacular names, this supplementary name

lookups are indispensable to improve the overall linking coverage (see Table 29). As

a final result, we return a JSON-object (step 7 ) containing all entity candidates

proposed by the neural tagger together with the associated positional and botanical

information. The latter includes a unique database ID, the taxon rank, a URL to

the CoL page of the taxon, the official name status, an associated accepted scientific

name and, if specified, a bibliographic reference. On the web-interface, we display

a prettified version of the JSON-object with an indentation size of two spaces in

an output window (see Figure 6). We additionally make the JSON-file available for

download.

Figure 6: Project website for end-to-end named entity recognition and entity linking.

3For German, we used the Wiki model trained with a dropout rate of 0.3, whereas for English,
we applied the model including the capitalization feature layer.
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Admittedly, due to long compilation and model building times required by the script

tagger.py, the web-interface is at this stage not optimized for fast performance.

Equally, the API requests using the CoL webservice are time-intense. We prevent an

excessive entity linking duration by querying only the unique entity candidates from

the input text. This easy-to-use application is a demonstration for automatic en-

tity extraction from raw, unstructured input text based on linguistic preprocessing,

domain-specific rule-based corrections, named entity recognition and entity linking.

5.4 Summary and Discussion

Linking and disambiguating named entities is essential for information and knowl-

edge extraction in manifold domains [Kolitsas et al., 2018]. Our entity linking eval-

uation on four distinct datasets showed that the integration of a tailored lookup

table is valuable for the disambiguation and subsequent linking of German vernacu-

lar names. We achieved a maximum improvement in overall entity linking coverage

of +16% for the German PlantBlog corpus containing a high concentration of ver-

nacular names. For English, we reached a total linking coverage of maximally 70%

of linked entities for the TB corpus using the Catalogue of Life (CoL) database and

webservice. Despite being the most comprehensive and internationally accepted

index of the world’s known species, the disambiguation of non-English vernacular

names is still hampered by incomplete databases and missing entries. The examples

of false positive matches returned by the CoL webservice showed that there is still

room for improvements to enhance automatic entity linking and disambiguation for

vernacular names. Our experiments did, however, contribute to fixing the sorting

order of the results on the level of scientific names in the CoL webservice. We hope

that these insights encourage further work on international, taxonomic knowledge

bases regarding the integration of vernacular botanical entities in lower-resourced

languages.
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6 Future Work and Outlook

Future tasks and challenges in this field involve the expansion of our presented

approach on additional languages to recover and aggregate international biodiversity

knowledge. Our experiments can serve as an exemplary pipeline for neural models

trained on large-scale Wikipedia data and the subsequent application on lower-

resourced text genres and new domains.

In terms of possible improvements, we suggest additional test runs using more coarse-

grained entity labels. The evaluation presented by Nothman et al. [2013], for in-

stance, shows a decrease of 4–6% in F1-score when adopting fine-grained instead of

coarse-grained entity types. Consequently, it could be beneficial to only distinguish

between the categories “scientific name” and “vernacular name” in order not to

confuse the neural tagger with the presence of numerous taxonomic labels. Yet, the

detection of fine-grained entity labels on multiple hierarchical levels is particularly

valuable for successfully classifying named entities and automatically populating or

enriching taxonomic knowledge bases [Ekbal et al., 2010]. The inclusion of text

material with condensed occurrences of low-frequent entity classes such as phylum,

class, and order could additionally increase recall and the overall model performance

on such taxonomic levels. Especially for lower-resourced domains and languages, the

integration of context-sensitive embeddings [Akbik et al., 2018; Peters et al., 2018;

Habibi et al., 2017] could additionally improve the performance and yield more

accurate word representations for multilingual taxonomic entities.

With our work, we hope to contribute to existing biodiversity projects and standard-

ization initiatives. The integration of botanical entities on a multilingual vernacular

level into in-domain resources and databases is, in our opinion, highly important for

safeguarding centuries-old plant knowledge. We want to emphasize that publicly

available webservices providing a comprehensive query functionality for both scien-

tific and vernacular name lookups can additionally contribute to revive the public

interest in biodiversity and the world’s botanical heritage, even for laypersons and

not botanically-minded citizens. In this spirit, we hope to continue our research

endeavors with the aim of bringing botany to the people through vernacular plant

name knowledge.
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7 Conclusion

In this thesis, we presented a semi-supervised approach for the recognition of scien-

tific and vernacular plant names across different text genres for German and English.

We created language-specific gazetteers to automatically annotate our training data

using a dictionary-based tagging approach. Thus, we avoided time-consuming man-

ual annotation without sacrificing high-quality training material. We found that

adopting a fine-grained entity label set with a total of nine hierarchical labels for

German, English and Latin results in robust performance across multiple genres.

Our iterative approach allowed us to eliminate preprocessing errors as far upstream

as possible in our annotation pipeline and to obtain higher quality data and a re-

duced performance gap between silver and gold standard evaluations. We com-

pared eight bi-LSTM-CRF models [Lample et al., 2016] per dataset and language

in single-dataset and cross-dataset evaluation settings. We found that low-effort

models trained on large-scale Wikipedia abstracts can achieve a robust cross-corpus

generalization ability and even outperform single-corpus models, which was the case

for the German PlantBlog and the historical BotLit corpus. Generally, we observed

the best performance on the Latin family label (lat fam) obtaining F1-scores of

>99% for the German combined model and >98% for the English combined model.

Regarding the performance on unseen entities from a related domain such as mycol-

ogy, we want to highlight the beneficial effect of an additional capitalization feature

layer in the bi-LSTM-CRF model [Lample et al., 2016]. After the second training

round, we observed the best combined model performance on both silver-labeled and

gold-labeled test sets with F1-scores >94% for German and >86% for English. The

best-performing German combined model uses a balanced dropout rate of 0.5, 300-

dimensional pre-trained word embeddings, and a character embedding dimension of

29 for training. For the English combined dataset, adopting a dropout rate of 0.7

and a character embedding dimension of 25 outperforms the other parameter com-

binations. Concerning the entity linking evaluation, the integration of a customized,

language-specific lookup table for disambiguating and subsequently linking vernac-

ular names to a reference database resulted in a performance boost of maximally

+16% in coverage for totally linked entities in the German datasets.
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Chapter 7. Conclusion

We hope that the generated data resources, large-scale Wiki models, and overall find-

ings from this work will contribute to promote information extraction approaches in

lower-resourced and under-explored domains, such as ethnobotany, folk medicine,

and mycology. Our results underline the importance of fine-grained, hierarchical

entity labels to enhance knowledge extraction in both scientific and non-scientific

contexts. Our final project milestone for disambiguating and interlinking the en-

tity candidates emphasizes the importance of integrating vernacular entities and

associated knowledge into existing botanical knowledge bases. We hope that our

approach can serve as a multilingual example for botanical end-to-end named entity

recognition and encourage similar endeavors in other languages, in which precious

traditional plant knowledge might be encoded.
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Glossary

accuracy Common evaluation metric given by the ratio of correctly tagged tokens

divided by the total number of tokens.

baseline An initial system used for comparison with subsequently trained and op-

timized systems.

corpus A (usually digitally available) collection of text material.

POS-tagging Part-Of-Speech (POS) tagging describes the process of automatically

annotating word classes (part-of-speech, i.e. noun, adjective) in text.

gazetteer A domain-specific name list, sometimes also referred to as dictionary,

used for name-lookups and dictionary-based annotation.

gold standard Manually labeled positive and negative examples in the data.

lemmatization A linguistic annotation step to find the lemma, that is, the canonical

base form for a given token, i.e. the lemma of “houses” is “house”.

machine learning Computational method to learn from previously seen input ex-

amples and to predict new, unseen instances.

named entity Any token or sequence of tokens constituting a name in the broader

sense. This includes proper names, toponyms, taxonomic names etc.

neural network Learning architecture based on multiple layers with the goal to

autonomously find patterns in the data and correctly predict new examples.

precision Common evaluation metric given by the ratio of correctly labeled tokens

divided by the total number of labeled tokens.

recall Common evaluation metric given by the ratio of correctly labeled tokens

divided by the total number of tokens that should have been labeled.

taxon A group of living species in taxonomy (plural taxa).

tokenization A linguistic preprocessing step involving the separation of single to-

kens at whitespaces and punctuation marking the end of a sentence.
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A Lists

Full list of botanical works1 (including translations) used for the extraction of ver-

nacular plant names:

• “Flora der Schweiz” (‘Flora of Switzerland’) [Heß et al., 1976]

• “Flora des Sihltals (‘Flora of Sihl Valley’) [Landolt, 2013]

• “Flora des Kantons Zürich” (‘Flora of the Canton of Zurich’) [Rickli, 1912]

• “Mundartnamen von Bäumen und Sträuchern in der deutschsprachigen

Schweiz und im Fürstentum Liechtenstein” (‘Vernacular names of trees and

shrubs of German-speaking Switzerland and Liechtenstein’) [Bosshard, 1978]

• “Lehrbuch der biologischen Heilmittel” (‘The textbook of biological remedies’)

[Madaus, 1938]

• “Unsere Alpenflora” (‘Our alpine flora’) [Landolt, 2003]

• “Pflanzen in Zürcher Mundart und Volksleben” (‘Vernacular plant names in

Zurich dialect and culture’) [Höhn-Ochsner, 1986]

• “Die Orchideen der Schweiz und angrenzender Gebiete” (‘Orchids of Switzer-

land and neighboring areas’) [Reinhard et al., 1991]

• “Einige oberösterreichische Trivialnamen der Pflanzen” (‘Vernacular plant names

of Upper Austria’) [Pfeiffer, 1898]

• “Die Moose Baden-Württembergs” (‘Mosses of Baden-Wuerttemberg’) [Nebel

and Philippi, 2000]

1Most of the botanical works used for the present project have been kindly provided by the plazi
institute. Alternatively, we retrieved the available, digitized works from the Internet.
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B Tables

German English

P R F P R F

Combined

baseline 95.11 91.45 93.24 88.28 82.35 85.20
pre emb 94.88 94.96 94.92 88.60 84.61 86.55
dropout 0.2 94.82 94.80 94.80 88.17 85.90 87.02
dropout 0.3 94.88 94.89 94.88 88.58 84.51 86.49
dropout 0.7 94.42 95.18 94.80 88.54 85.60 87.04
char dim 29 94.94 94.98 94.96 88.32 85.19 86.73
char dim 50 94.58 95.28 94.93 87.76 85.18 86.44
capdim 1 94.20 95.55 94.87 88.58 84.70 86.59

Wiki

baseline 95.06 91.96 93.47 88.42 83.83 86.06
pre emb 94.75 95.17 94.96 88.12 86.61 87.35
dropout 0.2 94.59 95.37 94.98 87.68 86.81 87.24
dropout 0.3 94.96 95.11 95.04 88.32 85.43 86.84
dropout 0.7 94.51 95.04 94.77 88.39 86.51 87.44
char dim 29 94.60 95.31 94.95 88.65 86.96 87.79
char dim 50 94.65 95.32 94.98 88.08 86.34 87.19
capdim 1 94.24 95.71 94.96 88.22 85.12 86.63

TB

baseline 90.40 81.44 85.64 62.22 45.95 52.38
pre emb 89.77 89.56 89.65 63.64 55.26 58.20
dropout 0.2 88.36 89.08 88.71 63.76 54.44 58.62
dropout 0.3 89.57 89.14 89.34 66.60 54.73 60.00
dropout 0.7 90.55 89.11 89.82 68.31 56.23 61.31
char dim 29 90.04 89.31 89.65 66.47 53.42 59.18
char dim 50 89.75 89.75 89.75 63.03 54.61 58.31
capdim 1 88.97 89.88 89.40 71.06 54.02 61.12

PlantBlog

baseline 74.96 68.77 70.26 78.96 60.97 68.58
pre emb 87.08 81.66 84.23 83.16 75.26 78.99
dropout 0.2 85.48 82.76 83.88 82.37 75.63 78.82
dropout 0.3 85.93 83.36 84.53 81.82 74.87 78.17
dropout 0.7 87.13 78.99 82.82 86.16 71.56 78.05
char dim 29 87.57 80.85 83.96 84.90 73.43 78.71
char dim 50 87.51 81.09 84.04 83.94 76.97 80.22
capdim 1 87.43 83.04 85.07 83.04 74.42 78.44

BotLit/S800

baseline 0.00 0.00 0.00 89.04 80.89 84.69
pre emb 60.09 21.01 28.19 89.59 84.61 86.99
dropout 0.2 61.52 35.94 44.43 89.21 83.30 86.13
dropout 0.3 67.81 36.62 47.21 90.14 82.98 86.39
dropout 0.7 40.00 6.50 11.11 90.83 84.64 87.60
char dim 29 71.08 29.48 41.01 90.43 83.93 87.04
char dim 50 55.00 14.96 22.44 89.04 83.43 86.10
capdim 1 66.59 27.82 38.24 89.84 83.87 86.71

Table 31: Evaluation results for all datasets (combined dataset, Wikipedia articles,
mountaineering reports, blog articles, botanical literature) (see Section
3.1.3) and parameter combinations (see Section 4.2).
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C Scripts

This appendix provides an overview on the Python scripts used for the single stages

of this project. All scripts and data resources are also available from the GitHub

repository https://github.com/IsabelMeraner/BotanicalNER/.

DATA COLLECTION (path = ‘scripts/data collection/’)

# create Text+Berg subset of sentences containing plant names:

$ python3 get subset textberg.py -i ./../TextBerg/SAC/

-o ./subset textberg de.txt

-g ./../resources/gazetteers/ -l de

# generate Latin plant name abbreviations:

$ python3 add latin abbreviations.py -i

./../resources/gazetteers/lat/lat species.txt

-o ./outfile.txt

# generate German morpholocical variants:

$ python3 add german variants.py

-i ./../resources/gazetteers/de/de fam.txt

-o ./outfile.txt

# split German compounds and add name variants:

$ python3 add compound variants.py

-i ./../resources/gazetteers/de/de species.txt

-o ./outfileGAZ.txt

# create language-specific gazetteers:

$ python3 create gazetteers.py

-i ./../resources/gazetteers/de/de species.txt -o outfile.txt

# add name variants to lookup-table:

$ python3 add variants database.py

-i ./../resources/gazetteers/lookup table/de lat referencedatabase.tsv
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-o ./outfile

# create fungi testset from Wikipedia articles:

$ python3 get wiki fungi testset.py

-o ./outfile.txt -c Pilze -l de

# retrieve Wikipedia abstracts and trivial names sections:

$ python3 retrieve wiki sections.py

-i ./../resources/gazetteers/lat/lat species.txt

-t ./outfile trivialsections.txt -a outfile wikiabstracts.txt -l de

# extract plant names from Catalogue of Life archive:

$ python3 extracttaxa cat of life -t ./colarchive/taxa/

-v ./colarchive/vernacular/ -l ./latin.out

-d ./german.out -e ./english.out -r rest vernacular.out

PREPROCESSING (path = ‘scripts/preprocessing/’)

# tokenization:

$ python3 tokenize corpus.py -d ./raw data/ -l de

# part-of-speech tagging:

$ python3 ./treetagger-python miotto/pos tag corpus.py

-d ./../resources/corpora/

DICTIONARY-BASED ANNOTATION (path = ‘scripts/annotation/’)

# German annotation in IOB-format:

$ python3 iobannotate corpus de.py -d ./../resources/corpora/

training corpora/de/ -v ./../resources/gazetteers/de/

-s ./../resources/gazetteers/lat/ -l de

# English annotation in IOB-format:

$ python3 iobannotate corpus en.py -d ./../resources/corpora/

training corpora/en/ -v ./../resources/gazetteers/en/

-s ./../resources/gazetteers/lat/ -l de
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TRAINING (path = ‘scripts/training/’)

# K-fold splitting of training data:

$ python3 kfold crossvalidation.py

-d ./../resources/corpora/training corpora/de/

# Bashscript 5-fold crossvalidation training (examples):

$ bash bashscript 5foldtraining preemb en.sh

$ bash bashscript 5foldtraining preemb de.sh

# Adapted scripts from Lample et al. (2016):

$ python2 train no dev.py

$ python2 utils.py

EVALUATION (path = ‘scripts/evaluation/’)

# Averaged evaluation over 5 folds:

$ python2 final eval kfold.py

-d ./../../evaluation/baseline/model baseline/

-o ./evaluation files/

# Evaluation of silver standard:

$ python3 evaluate gold silver.py

-s ./../resources/corpora/gold standard/

de/alldata.test.fold1SILVER de.txt

-g ./../resources/corpora/gold standard

/de/alldata.test.fold1GOLD de.txt

# Cross-dataset evaluation:

$ python3 cross dataset evaluation.py

-s ./silver standard/plantblog corpus.test.fold1.txt

-t ./tagged data/model wiki test blog f1 dropout5.tsv

# File statistics training corpora (size, token, types, averaged length):

$ python3 file statistics.py

-i ./../resources/corpora/training corpora/de/

# Transform IOB-format to 1-sentence-per-line (input for tagger.py):

$ python3 transform iob to sentences.py

-i ./../resources/corpora/training corpora/

de/botlit corpus de.tok.pos.iob.txt

-o botlit sentences.txt
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ENTITY LINKING (path = ‘scripts/entity linking/’)

# Catalogue of Life entity linking and creation of JSON-output:

$ python3 entity linker.py

-i ./../resources/corpora/training corpora/de/

botlit corpus de.tok.pos.iob.txt

-o ./json file.json -f IOB

-r ./../resources/gazetteers/lookup table/

de lat referencedatabase.tsv -l True
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D Web-Interface Pipeline

For running the web-application, the following dependencies need to be installed:

• Python3

• NLTK [Loper and Bird, 2002]

• spaCy [Honnibal and Montani, 2017]

• Flask for Python [Grinberg, 2014]

The following scripts and functions are included in the processing pipeline of the

web-interface as described in Section 5.3.

# Start web-application:

$ python3 web application.py

# Domain-adapted tokenization (function):

tokenize input(inputText, language)

# Tagging of tokenized input sentence:

subprocess.call("python3 ./tagger-master/tagger.py -m ./models/{}
-i ./output/input tokenized.txt -o ./output/output tagged.txt

-d ".format(model), shell=True)

# Linking of entity candidates:

subprocess.call("python3 ./entity linker.py

-i ./output/output tagged.txt -o ./static/output linked.json

--language {}".format(language), shell=True)
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E Resources and Example Output

TRAINING DATA (path = ‘resources/corpora/training corpora/’)

# Silver standard training corpora (in IOB-format):

• plantblog corpus {de|en}.tok.pos.iob.txt

• wiki abstractcorpus {de|en}.tok.pos.iob.txt

• TextBerg subcorpus {de|en}.tok.pos.iob.txt

• {botlit|s800} corpus {de|en}.tok.pos.iob.txt

# Gold standard fold of combined dataset (in IOB-format):

• combined.test.fold1GOLD {de|en}.txt

# Fungi testset for in-domain evaluation on held-out entities:

• test fungi {de|en}.tok.pos.iobGOLD.txt

GAZETTEERS (path = ‘resources/gazetteers/’)

# Vernacular names (German):

• de fam.txt

• de species.txt

# Vernacular names (English):

• en fam.txt

• en species.txt

# Scientific names (Latin):

• lat fam.txt

• lat species.txt

89



APPENDIX E. RESOURCES AND EXAMPLE OUTPUT

• lat genus.txt

• lat subfam.txt

• lat class.txt

• lat order.txt

• lat phylum.txt

# Lookup tables for vernacular names:

• {de|en} lat referencedatabase.tsv

bi-LSTM-CRF MODELS (path = ‘resources/models/’)

# Best-performing models for German and English (single-dataset eval-

uation):

• model combined chardim29 de

• model wiki dropout0.3 de

• model tb dropout0.7 de

• model plantblog capdim1 de

• model botlit dropout0.3 de

• model combined dropout0.7 en

• model wiki chardim29 en

• model tb capdim1 en

• model plantblog chardim50 en

• model s800 dropout0.7 en

# Best-performing Wiki models for German and English (cross-dataset

evaluation):

• model wiki crosscorpus de dropout0.3 (cross-corpus setting)

• model wiki crosscorpus de capdim1 (fungi test set)

• model wiki crosscorpus en preemb dropout0.5 (cross-corpus setting)

• model wiki crosscorpus en capdim1 (fungi test set)
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TAGGED DATA (path = ‘resources/sample output/’)

# Single-dataset model predictions:

• predictions wiki {de|en}.output

• predictions tb {de|en}.output

• predictions plantblog {de|en}.output

• predictions {botlit|s800} {de|en}.output

# Cross-dataset model predictions:

• predictions model wiki test tb

preemb chardim25 dropout5 capdim1 {de|en}.tsv

• predictions model wiki test plantblog

preemb chardim25 dropout5 capdim1 {de|en}.tsv

• predictions model wiki test {botlit|s800}
preemb chardim25 dropout5 capdim1 {de|en}.tsv

ENTITY LINKING (path = ‘resources/linked data/’)

# Vernacular-scientific lookup-table:

• {de|en} lat referencedatabase.tsv

# Example JSON-output per data resource:

• json data wiki {de|en}.json

• json data tb {de|en}.json

• json data plantblog {de|en}.json

• json data {botlit|s800} {de|en}.json

91



 

Seite 1/1      5.2.2019                                    

Philosophische Fakultät 
Studiendekanat 
 
Universität Zürich 
Philosophische Fakultät 
Studiendekanat 
Rämistrasse 69 
CH-8001 Zürich 
www.phil.uzh.ch 

 

 
Selbstständigkeitserklärung 
 
Hiermit erkläre ich, dass die Masterarbeit von mir selbst ohne unerlaubte Beihilfe verfasst worden ist 
und ich die Grundsätze wissenschaftlicher Redlichkeit einhalte (vgl. dazu: 
http://www.uzh.ch/de/studies/teaching/plagiate.html). 
 
 
Zürich, 01.03.2019 
 ..................................................................................................................................................................  
Ort und Datum Unterschrift 
 
 


	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Task Description and Outline
	Research Interests and Contributions
	Thesis Structure

	Related Work
	The Names of Plants
	Named Entity Recognition
	Rule-Based versus Dictionary-Based Approaches
	Weakly and Semi-Supervised Learning Approaches
	Supervised Machine Learning Approaches
	State-Of-The-Art Neural Named Entity Recognition

	Botanical Databases and Entity Recognition
	Botanical Knowledge Bases
	Botanical Entity Recognition and Information Extraction

	Entity Linking

	Tagging Plants: Methods and Tools
	Data Collection
	Gazetteers
	Scientific Gazetteers
	Vernacular Gazetteers
	Generation of Name Variants

	Digitization of Botanical Works
	Training Corpora

	Linguistic Preprocessing
	Treatment of Botanical Abbreviations
	The CoNLL-2003 format

	Dictionary-based Annotation
	The IOB tag scheme
	Pattern-Based Corrections

	Creation of Gold Standard
	Annotation Guidelines

	Application of the bi-LSTM-CRF Architecture

	Neural Models: Results and Evaluation
	Evaluation of Semi-Automatic Annotations
	Individual Dataset Evaluation
	Baseline
	Adding Distributional Information with Word Embeddings
	Dropout Training
	Character Embedding Dimension
	Capitalization Feature Dimension
	Model Performance Per Entity Label

	Cross-Dataset Evaluation
	Tagging Fungi: Evaluation on Unseen Entities
	Comparison to In-Domain Systems
	Error Analysis
	Source of Error I: Preprocessing
	Source of Error II: Entity Shape and Heterogeneity
	Source of Error III: Language-Specific Entity Ambiguity

	Cross-Lingual Comparison
	Summary and Discussion

	Linking Plants: Botanical Entity Linking and Visualization
	Querying Botanical Reference Databases
	Entity Linking Performance
	Web-Interface: End-to-End Named Entity Recognition and Linking
	Summary and Discussion

	Future Work and Outlook
	Conclusion
	Glossary
	References
	Curriculum Vitae
	Lists
	Tables
	Scripts
	Web-Interface Pipeline
	Resources and Example Output

